USENIX

THE ADVANCED COMPUTING
SYSTEMS ASSOCIATION

BootKiTTY: A Stealthy Bootkit-Rootkit Against
Modern Operating Systems

Junho Lee, Mokpo National University; Jihoon Kwon, Korea University; HyunA Seo,
Sungshin Women'’s University; Myeongyeol Lee, Chosun University; Hyungyu Seo,
Keimyung University; Jinho Jung, Ministry of National Defense;
Hyungjoon Koo, Sungkyunkwan University

https://www.usenix.org/conference/woot25/presentation/lee

This paper is included in the Proceedings of the
19th USENIX WOOT Conference on Offensive Technologies.

August 11-12, 2025 - Seattle, WA, USA
ISBN 978-1-939133-50-2

Open access to the Proceedings of the
19th USENIX WOOT Conference on Offensive Technologies
is sponsored by USENIX.

ARTIFACT
EVALUATED
yusenix

AAAAAAAAAAA

BOOTKITTY: A Stealthy Bootkit-Rootkit Against Modern Operating Systems

Junho Lee
Mokpo National University

Myeongyeol Lee
Chosun University

Jihoon Kwon
Korea University

Hyungyu Seo
Keimyung University ~ Ministry of National Defense

HyunA Seo
Sungshin Women’s University

Jinho Jung

Hyungjoon Koo
Sungkyunkwan University

Abstract

Bootkits and rootkits are among the most elusive and per-
sistent forms of malware, subverting system defenses by op-
erating at the lowest levels of system architecture. Bootkits
compromise the firmware or bootloader, allowing them to
manipulate the boot sequence and gain control before security
mechanisms initialize. Meanwhile, rootkits embed themselves
within the OS kernel, stealthily conceal malicious activities,
and maintain long-term persistence. Despite their critical im-
plications for security, these threats remain underexplored
due to the technical complexity involved in their study, the
scarcity of real-world samples, and the challenges posed by
defense-in-depth security in modern OSes.

In this paper, we introduce BOOTKITTY, a hybrid bootkit-
rootkit capable of circumventing modern security features in
multiple OS platforms, across Windows, Linux, and Android.
We explore critical firmware and bootloader vulnerabilities
that can lead to a low-level compromise, demonstrating tech-
niques that bypass advanced security protections by breaking
the chain of trust. Our study addresses technical challenges
such as exploiting UEFI drivers, manipulating kernel memory,
and evading advanced mitigations in the boot process, and
provides actionable insights. Our systematic evaluations show
that BOOTKITTY reveals critical weaknesses in contempo-
rary security mechanisms, highlighting the need for better
security design that offers holistic (low-level) protection.

1 Introduction

Malware infiltration presents a persistent and evolving threat
in modern computing environments. Among the most elusive
forms of malware are bootkits and rootkits, which operate at
the lowest levels of system architecture to evade detection,
persist stealthily, and thwart conventional security mecha-
nisms [24,36,47,52,61]. Bootkits embed themselves within
firmware (e.g., UEFI [106]) or the bootloader, allowing them
to manipulate the boot sequence and execute before any secu-
rity mechanisms are initialized. On the other hand, rootkits run

themselves within the OS kernel, obscuring malicious activi-
ties by concealing processes, files, and network packets. Both
classes of malware can remain undetected because of their
privileged execution and deep system penetration, systemati-
cally subverting even defense-in-depth security for modern
OSes. Conducted by advanced adversaries, such as Nation-
State Actors and Advanced Persistent Threat (APT) groups,
the objectives of these attacks range from data exfiltration and
espionage to system sabotage. Besides, the stealthy nature
and long-term exploitation (i.e., survival after system reboots)
of bootkits and rootkits make them particularly riskier than
conventional malware.

Despite the evolving security mechanisms such as UEFI
Secure Boot [104] on PCs and Verified Boot [10, 83] on mo-
bile devices, bootkits and rootkits continue to exploit low-
level vulnerabilities in firmware and OS kernel components
to undermine these protections. Bootkits leverage firmware
weaknesses to tamper with the boot process, undermining
the system’s foundational security. Rootkits evade kernel-
level protections, including PatchGuard [62] in Windows and
Kernel Lockdown [53] in Linux, allowing them to operate
undetected. Hence, an in-depth understanding of such threats
and infiltration routes can assist in designing holistic defense
strategies and providing critical insights to harden modern
systems.

Although these threats pose a severe risk, studying bootkits
and rootkits remains limited for several reasons: @D (Lack
of Real-world Samples) Unlike widespread malware cam-
paigns, bootkits and rootkits are primarily used in targeted
attacks [46, 84], limiting public research opportunities. 2)
(Technical Complexity) Studying these threats requires deep
expertise in UEFI internals, OS kernel operations, driver inter-
actions, memory management, and hardware initialization. 3
(Advanced Protections and Debugging Challenges) Mod-
ern OSes adopt secure bootchains, mandatory driver sign-
ing [54, 67], hypervisor-based monitoring [68], and memory
encryption, rendering both the analyses and attack demonstra-
tions more challenging. @ (Hardware and Firmware Vari-
ability) Differences across hardware platforms and firmware

USENIX Association

19th USENIX WOOT Conference on Offensive Technologies 303

implementations complicate the development of universal

bootkits and rootkits, requiring custom exploits and extensive

hardware-based testing.

These technical barriers explain why bootkits and rootkits
receive less attention compared to more accessible threats
like ransomware and botnets. Security teams often prioritize
higher-level malware due to the steep learning curve, diverse
firmware architectures, limited debugging tools, and the neces-
sity of hardware-based testing (as well as limited resources).
As a result, comprehensive and reproducible case studies on
low-level intrusion remain scarce.

In this paper, we bridge these gaps by constructing and an-
alyzing a hybrid bootkit-rootkit, dubbed BOOTKITTY, which
demonstrates how firmware-level vulnerabilities can be ex-
ploited to compromise modern OSes across multiple plat-
forms (e.g., Windows, Linux, and Android). We identify and
exploit boot-level vulnerabilities that allow early-boot code ex-
ecution and chain these weaknesses to achieve OS-level com-
promise at the kernel layer. Next, we provide a detailed techni-
cal breakdown of the steps required to circumvent key security
mechanisms, including UEFI Secure Boot (firmware protec-
tion), Kernel Lockdown [53] (kernel integrity), and Driver Sig-
nature Enforcement (DSE) [67] (kernel module verification).
To this end, our experimental setup for instrumenting bootkits
and rootkits includes debugging UEFI firmware and pre-OS
execution environments, hooking kernel structures for stealthy
persistence, and analyzing OS-level interactions across dif-
ferent platforms. Lastly, we outline actionable insights for
defense in firmware security by strengthening secure boot
enforcement, kernel protection by improving detection, and
OS-level integrity monitoring by runtime verification of boot
and kernel processes. BOOTKITTY highlights the potency of
low-level malware and the critical need for the better secu-
rity design that offers holistic protection from the bare-metal
startup process to OS execution.

In summary, we make the following contributions:

* We identify critical challenges in deploying bootkit-rootkit
attacks across modern OSes.

* We design and implement BOOTKITTY, a hybrid bootkit-
rootkit that exploits firmware and bootloader vulnerabilities,
achieving persistent compromise with minimal adversary
interaction.

* We demonstrate practical techniques to evade advanced
security defenses for modern OSes.

» We highlight boot process weaknesses and provide action-
able insights into fortifying system integrity in a trust chain.

2 Background

Bootkits and Rootkits. Bootkits are a class of malware
that operate at the earliest stages of the system boot, target-
ing components such as UEFI, Basic Input/Output System
(BIOS) [25], the Master Boot Record (MBR) [4], or the boot-

pre-OS level

Hardware Level OS level

[] [] []
(@ Firmwarej —P(@ Boot Loader j —>»> (@ Kernelj —>» (@ Userj

Figure 1: Modern OS Boot Process (§2).

loader. By executing malicious code before the OS is loaded,
they achieve persistence covertly. As a result, bootkits are
notoriously difficult to detect and remove, often surviving
OS reinstallations and full disk reinitializations. Meanwhile,
rootkits are a class of malware designed to stealthily obtain
top-level privileges within an OS, allowing an attacker to
maintain long-term control and surveillance. They evade de-
tection by concealing their presence from critical security
components, including file systems, process lists, and system
logs. Once active, a rootkit can install backdoors, harvest sen-
sitive information, manipulate kernel drivers, intercept system
functions. By remaining hidden for extended periods, rootkits
serve as a persistent foothold for further attacks or data exfil-
tration, posing a critical security threat. This work introduces
BoOOTKITTY, a bootkit-rootkit hybrid.

Boot Process in Modern OS. A modern OS (e.g., Windows,
Linux, Android) follows a similar boot process, although
their implementation varies by architecture. Figure 1 illus-
trates the general boot process of modern OSes. (D When
the power is turned on, the firmware initializes the hardware
first. Windows and Linux use UEFI, while Android uses a
Boot ROM [94]. @) After that, the process moves on to the
bootloader stage. In Windows, the boot manager runs first,
and then the OS Loader in sequence. In Linux, Shim [100] is
executed first, then GRUB2 [37], and in Android, the Little
Kernel (LK) [56] is launched. 3 Once the bootloader fin-
ishes, the kernel is loaded and initializes hardware such as the
CPU, memory, and peripheral devices, setting up internal data
structures and scheduling. At this time, if Virtualization-based
Security (VBS) [64] is enabled in Windows, the hypervisor is
also initialized during kernel loading. @ Finally, each kernel
initializes user-space processes and services to complete the
boot process, bringing the system to a fully operational state.

Secure Boot. Secure Boot is a security feature of the UEFI
that ensures a secure boot process by verifying only trusted
software through cryptographic signatures. Such trusted soft-
ware includes bootloaders like the Windows boot manager
and Linux’s Shim [100], both of which are trusted within the
UEFI boot chain due to their official Microsoft signatures. In
the case of the Shim bootloader, it incorporates an additional
mechanism known as the Machine Owner Key (MOK) [103],
which allows users to manage trusted keys for loading custom
or third-party bootloaders, kernel modules, or drivers without
breaking the Secure Boot chain. Together, UEFI and MOK as-
sist in verifying boot components, prevent unauthorized mod-
ifications, and preserve system integrity throughout the boot
sequence. Note that Secure Boot and MOK are independent

304 19th USENIX WOOT Conference on Offensive Technologies

USENIX Association

of modern OSes, but supported by multiple OS environments,
including Windows and major Linux distributions.

Advanced Protection Mechanisms for Booting. While OSes
differ in architecture, modern boot chains incorporate shared
security measures to ensure system integrity and prevent unau-
thorized modifications. First, at the firmware level, Secure
Boot ensures that only trusted and digitally signed software
components are allowed to execute during the boot process.
The firmware establishes a chain of trust with the Platform
Key (PK) [107], which ensures each subsequent component
(e.g., boot manager or bootloader) is verified. Second, the OS
kernel enforces code integrity during loading, using DSE in
Windows and Kernel Module Signing [54] in Linux. Besides,
kernel integrity protection mechanisms, such as PatchGuard
and Kernel Lockdown, help safeguard critical system data
from unauthorized modifications. Third, Mandatory Access
Control (MAC) [42] enforces strict security policies to protect
the bootloader and critical configuration files. For instance,
SELinux [93] restricts file access, mitigating tampering by
permitting modifications or execution only by authorized pro-
cesses. Fourth, VBS leverages a hypervisor to isolate critical
system processes and enforce security policies. A good ex-
ample is Credential Guard [66] and Hypervisor-Protected
Code Integrity (HVCI) [68] in Windows, and Protected Ker-
nel Virtual Machine (pKVM) [11] and Android Virtualization
Framework (AVF) [9] in Android. Note that BOOTKITTY is
designed to circumvent varying protection mechanisms in
modern OSes.

3 Threat Model and Challenges

This section describes our threat model and obstacles we en-
counter when implementing a bootkit-rootkit against modern
OSes equipped with advanced security mechanisms.

3.1 Threat Model

We assume an adversary with physical access to the target
system (victim), capable of initiating rapid infection within
minutes. The victim system is running Windows or Linux un-
der a normal user account, or Android with standard user priv-
ileges. For the infection, the adversary may leverage known
vulnerabilities to escalate privileges if exploitable conditions
are met. For both Windows and Linux, if an adversary gains
the ability to execute arbitrary commands with SYSTEM priv-
ileges on Windows or root privileges on Linux, they could
remotely deploy bootkit or rootkit modules without requiring
physical access. However, our current implementation neces-
sitates physical access for the initial infection, as we currently
lack viable remote code execution exploits for either platform.
For Android, strict platform restrictions make remote flash-
ing infeasible, therefore physical access is required for the
initial compromise. Additionally, we exclude remote exploits

from our threat model (§8), as achieving remote code execu-
tion and evading antivirus is beyond the scope of this work.
Nevertheless, if such an exploit were available, our system
could support remote deployment. Once installed, the bootkit
and rootkit are capable of bypassing antivirus measures.

BOOTKITTY targets multiple testbed platforms, including
(but not limited to) Windows 24H2 (October 2024), Linux
Ubuntu 24.04.01 (kernel 6.8.0-31), and Android 4.14.186 on
Galaxy A325N devices where the target systems hold sev-
eral 1-day vulnerabilities that BOOTKITTY should harness
for exploitation. As a final note, a system reboot is required to
evade runtime security mitigations during an infection phase.

3.2 Attack Overview

Initial Compromise. To infect a target system, we establish
a USB connection that requires physical access to the target
device. For Windows and Linux, we emulate a keyboard (e.g.,
BadUSB [22,27]) to interact with the system automatically.
Upon connection, this virtual device is recognized as a key-
board, running predefined commands to download and launch
BOOTKITTY from a remote server. For Android, the adver-
sary forces the device into a special boot mode (e.g., Odin ')
for flashing our payload to bypass pre-OS authentication.

BOOTKITTY Injection. A bootkit-rootkit can be injected
across Windows, Linux, and Android. Despite variations in
boot processes, BOOTKITTY follows four common key steps:
* Infection: An attacker exploits firmware vulnerabilities,
allowing the overwriting of firmware objects (e.g., boot
logo images). Then, BOOTKITTY can execute the attacker-
injected code at the firmware level (e.g., Secure Boot by-
pass), breaking the chain of trust in a subsequent booting.

Bootkit Operation: BOOTKITTY implants its custom mod-
ules and initiates code execution at the pre-OS stage,
thereby establishing control before the OS loads.

Rootkit Installation: The compromised bootloader patches
critical routines to disable kernel defenses allowing for
rootkit installation by loading arbitrary kernel drivers.

Rootkit Operation: The surreptitious rootkit exfiltrates
victim’s sensitive information in an undetectable fashion
while communicating with a remote server.

3.3 Challenges

Understanding Low-level Code. Constructing bootkits and
rootkits is inherently challenging due to the need to exploit
vulnerabilities in an operating system’s low-level architecture.
These types of malware must operate within the firmware,
bootloader, or kernel, requiring specialized knowledge and
precise execution. A bootkit executes before the OS is loaded
into memory, necessitating a deep understanding of the boot

10din mode allows users to flash firmware, recovery images, and low-
level system files on Samsung Android devices.

USENIX Association

19th USENIX WOOT Conference on Offensive Technologies 305

process and the ability to bypass security mechanisms such as
Secure Boot that ensures boot integrity. In contrast, a rootkit
operates within kernel space, directly interacting with the OS
core functions. Both must evade security mitigations designed
to secure the boot process and kernel operations, rendering
their implementation highly complex.

Undocumented Routines. UEFI firmware and many OS com-
ponents lack appropriate documentation, making reverse en-
gineering a critical step in bootkit and rootkit implementation.
Such absence of documentation introduces significant time
and complexity, forcing a malware author to rely on trial-
and-error approaches to understand internal routines. Any
inappropriate interaction with the firmware or OS kernel can
bring about system instability or crashes, with no clear guide-
lines available for troubleshooting or resolving such issues.

Limited Samples. Bootkits and rootkits typically target high-
value systems, leveraging stealth techniques to evade detec-
tion while bypassing modern OS security features. Due to
their complexity and the risks associated with their exposure,
publicly available samples are rare in the wild.

Debugging Challenges. Debugging bootkits and rootkits
presents significant technical challenges. Unlike rootkits that
can utilize kernel debugging tools provided by most OSes,
firmware and bootloader-level debugging is particularly chal-
lenging due to the absence of standardized tools. Besides,
firmware testing on actual hardware (rather than on emu-
lated environments) is non-trivial because it may introduce
a substantial risk; i.e., any failure during testing can result in
permanent hardware damage.

Architectural Variations. The diversity of modern comput-
ing environments further complicates bootkit development.
Fragmentation across hardware platforms, firmware imple-
mentations, and kernel architecture demand substantial engi-
neering effort to create universally compatible malware.

4 BoOTKITTY on Windows

This section delineates varying mitigation techniques to safe-
guard a boot process in Windows, followed by the design and
implementation of BOOTKITTY on Windows.

4.1 Boot Process Safeguards in Windows

DSE. DSE has been introduced since Windows Vista to en-
sure that only digitally signed drivers trusted by Microsoft
can be loaded into the kernel [63]. Note that BOOTKITTY
nullifies DSE, which loads an unsigned rootkit driver.

VBS. VBS in Windows utilizes hardware virtualization and
the hypervisor to create an isolated environment that protects
critical system resources and security assets.

HVCI. HVCl is a security technique within the VBS environ-
ment that protects the kernel from tampering by preventing

unsigned or modified code execution. Notably, BOOTKITTY
circumvents VBS and HVCI by disabling them.

PatchGuard. Windows OS detects and prevents unauthorized
modifications to kernel structures through PatchGuard, which
periodically verifies the integrity of critical kernel data and
code sections. BOOTKITTY disables PatchGuard to forge
essential internal structures within the kernel space, such as
the System Service Descriptor Table (SSDT) [113] and the
Interrupt Descriptor Table (IDT) [110].

4.2 Bootkit Infection on Windows

Exploitation Overview. BOOTKITTY aims to circumvent
Secure Boot’s security mechanisms to establish a persistent
foothold within the system’s boot chain, enabling the execu-
tion of malicious code during startup. At a high level, this pro-
cess exploits a one-day vulnerability (CVE-2022-21894 [72])
by creating a legitimate system utility, mcupdate, with a mali-
cious version. Once compromised, it interacts with the MOK
installer to enroll a rogue MOK, allowing BOOTKITTY to
bypass Secure Boot verification. Figure 2 depicts the overall
process of BOOTKITTY on Windows, compromising the lay-
ered security mechanisms in the firmware, bootloader, and
kernel in sequence.

Launching BOOTKITTY. As described in §3.1, the installer
(i.e., bootkitty.exe) initiates the infection on a running Win-
dows system. It disables critical security mechanisms (e.g.,
HVCI or BitLocker [65]).

Manipulating Boot Configuration Data. The Windows
boot manager (bootmgfw.efi) plays a crucial role in booting
by reading a database, Boot Configuration Data (BCD) [70],
that contains essential boot-related settings and configura-
tion options to load the OS properly. As with BlackLo-
tus bootkit [72], BOOTKITTY drops a vulnerable (but le-
gitimately signed) boot manager, hypervisor loader, and li-
braries. This allows an adversary to add several options
(e.g., avoidlowmemory, trucatememory, nointegritychecks,
testsigning) to BCD for further exploitation. To trigger the
above vulnerability, BOOTKITTY creates a malicious BCD
that uses the previously dropped boot manager and hypervi-
sor loader, and then applies it to the system. Once completed,
BOOTKITTY forces the Windows system to reboot. During
startup, BOOTKITTY executes the payload with the replaced
EFI files. Bypassing Secure Boot is essential as it is usually
enabled by default.

Bypassing Secure Boot Verification. After rebooting,
BOOTKITTY can bypass the Secure Boot security feature by
disabling Secure Boot verification with the manipulated BCD.
This process involves shifting Secure Boot to a higher mem-
ory region (with the avoidlowmemory option) and removing
its memory block (with the truncatememory option), effec-
tively disabling enforcement. Although CVE-2022-21894
(also known as Baton Drop) was patched, a new vulnerability

306 19th USENIX WOOT Conference on Offensive Technologies

USENIX Association

p . i . bypassed
i Installer (Windows) Operation (§4.3) Ypasse
(Bootkit (§4.3.1) Rootkit Installation (§4.3.2) \ (Rootkit)
h A create Operation
:\ (system priv.)) B1: Shim R3: disk.sys (84.3.3)

| Infection (§4.2) y T Joctt
. N B2: grubx64.efi \
I1: BCD update (self-signed bootkit) \monitor / load -
* ot.exe
& reboot 13: hvloader ¥ hook R4: User auth (C&C)
12: bypass (created) B3: Boot manager mapped (winlogon exe)
verification (bootmgfw.efi) .
BCD Store CVE-2022-21894 + R2: dlsablw
4: MOK * hook hook PatchGuard S,
installer B4: Loader —)00 Rl:[Kimf’l core VBS Remote
IS: restore BCD (winload.efi) (ntoskrnl.exe) DSE i server

\ reboot —) e /

UEFI Boot oot ; Windows | PatchGuard User UAC

: SecureB : MOK IntegrityCheck : : :

Firmware ¢ oot Manager & oad HeRHEee Kernel (VBS/HVCI DSE Space | Defender

Figure 2: Overview of BOOTKITTY on Windows. The infection phase corrupts the BCD and bypasses Secure Boot using a
1-day vulnerability. Then, the bootkit loads a malicious bootloader to gain kernel control, while the rootkit operates stealthily by
disabling security features. The rootkit finally communicates with a remote server for Command-and-Control (C&C).

was discovered that bypasses the fix by allowing attackers
to replace the patched boot manager with a vulnerable ver-
sion. In response, Microsoft released additional patches [71] Z,
However, the issue persists widely, as the mitigation requires
a complex, manual installation process, leaving many systems
still vulnerable to the exploit. Interested readers refer to the
exploit in detail [1,95].

Preparing MOK Registration. During the Secure Boot
bypass, BOOTKITTY forces UEFI to load a self-signed DLL.
At this stage, BOOTKITTY loads the compromised Win-
dows hypervisor loader to load a custom-signed dll file (e.g.,
mcupdate.dll). The file allocates a memory region and maps
it to the code for MOK registration. A careful reader may note
that DLLs are specific to Windows and not directly related
to UEFI. However, executing code through a DLL is feasi-
ble because it is loaded before UEFI invokes a function that
terminates UEFI services (ExitBootServices()).

Enrolling Custom MOK. Next, BOOTKITTY registers a
custom MOK in NVRAM and sets a Microsoft-signed Shim
binary as the default bootloader. Recall the Shim is a first-
stage UEFI bootloader, followed by loading GRand Unified
Bootloader 2 (GRUB2) [37] to launch the system. Since Mi-
crosoft only signs the Shim and delegates boot control to it,
inserting custom keys into a user-managed key database is
possible to circumvent Secure Boot. This step ensures the per-
sistent control over the system by BOOTKITTY after reboots.

Restoring BCD. After enrolling the MOK, BOOTKITTY
restores the original BCD to avoid user detection (i.e., return-
ing to a seemingly normal boot process). At this point, the
attacker breaks the chain of trust by leveraging the MOK to

2This update addresses CVE-2023-24932 [71], which affects CVE-2022-
21894 [72].

load a self-signed bootloader without restriction.

4.3 BoOTKITTY Operations on Windows

4.3.1 Bootkit Operation

Overview. The bootkit operates at both the bootloader and
kernel levels, using a multi-stage approach to disable security
mechanisms and prepare for rootkit installation. At the boot-
loader level, BOOTKITTY sequentially intercepts key com-
ponents to modify kernel loading and allocate memory for
rootkits. At the kernel level, BOOTKITTY hooks NT kernel
functions and initial drivers to disable security features while
injecting and executing malicious code. Such a carefully or-
chestrated operation compromises the boot process so that
BOOTKITTY persistently can reside in a malicious environ-
ment after system reboots. Figure 2 (B1] ~ [B4)) illustrates
the Bootkit operation as the following step-by-step process.

Exploitation. The bootkit intercepts multiple components to
evade Windows’ security mitigation. We deploy hooks in key
Windows boot components, including the Windows boot man-
ager (bootmgfw.efi), the Windows OS loader (winload.efi),
and the Windows kernel (Ntoskrnl.exe), to disable secu-
rity mechanisms during the boot process. BooTtKiITTY
leverages a Microsoft-signed Shim to load custom code with-
out triggering Secure Boot alerts. With a custom MOK, the
Shim passes control to the next stage, allowing malicious
components to load under the guise of legitimate boot files.
Instead of loading the genuine Windows boot manager,
BOOTKITTY directs the Shim to load a self-signed GRUB2
image (grubx64.efi), which functions as the bootkit. Be-
cause the Shim is designed to load boot files with the spe-
cific name (grubx64.efi), we follow the naming conven-

USENIX Association

19th USENIX WOOT Conference on Offensive Technologies 307

tion for seamless execution within the Secure Boot frame-
work. This bootkit intervenes in the normal boot process,
manipulates the boot sequence, and ultimately enables ker-
nel patching, leading to the installation and loading of the
rootkit. At this point, the bootkit bypassed Secure Boot
by using a custom MOK. BOOTKITTY hooks the original
Windows boot manager (bootmgfw.efi) to intercept loading
routines and allocate memory for subsequent components (i.e.,
winload.efi). Compromising winload.efi in memory, it re-
serves space for rootkits and ensures persistence. Finally,
the compromised boot manager calls the Windows OS loader
(winload.efi). At this stage, BOOTKITTY injects hooks into
the kernel-loading process, targeting functions that validate
the memory map and prepare boot data for kernel execution.

4.3.2 Rootkit Installation

Figure 2 (middle) depicts the rootkit installation phases.
The Windows OS loader transfers control to the Windows
kernel (Ntoskrnl.exe). During kernel initialization, the OS
loader locates the kernel memory layout, applying memory
patches to evade Windows mitigation mechanisms. By
hooking the kernel, BOOTKITTY disables core security fea-
tures such as PathGuard, VBS, and DSE. These hooks also
inject a rootkit loader into an allocated memory buffer, en-
abling subsequent execution of malicious code in the kernel.
After thwarting security mechanisms on Windows, we
intercept the disk driver (Disk.sys) to execute the rootkit
loader by handling read/write operations. This loader installs
the main rootkit payload into the kernel memory by creat-
ing the rootkit driver (rootkit.sys). Since the file system
is not fully initialized during the early boot stages, the cre-
ation of the rootkit driver is postponed until the user authen-
tication process (winlogon.exe) is loaded. Once the au-
thentication is complete, the pre-defined callback functions
(via PsSetLoadImageNotifyRoutine()) at the rootkit loader
create the rootkit driver file. This phase registers a service
key (e.g., ImagePath, Type, Start, ErrorControl) in the reg-
istry, followed by installing the driver. Finally, the main
rootkit payload (rootkit.sys) is loaded into the kernel mem-
ory. The rootkit maintains stealth, provides persistent control,
and communicates covertly with user space modules and re-
mote servers through input/output control operations.

4.3.3 Rootkit Operation

Rootkit Features. Table | outlines seven key features that
BOOTKITTY can provide as a rootkit. First, the rootkit con-
ceals processes by unlinking their EPROCESS structures from
the system’s process list, rendering them invisible to tools like
Task Manager. Second, it modifies flags in the object header
associated with EPROCESS to prevent system shutdown, ef-
fectively blocking termination attempts. Third, for registry
hiding, the rootkit intercepts operations through callback rou-

Functionality Interception Means Exploitation
Hiding processes Unlink kernel structures ~ EPROCESS
Preventing a shutdown Modify object headers EPROCESS

Hiding registry keys Hinder registry operations Registry

Hiding sockets Hook driver handlers NSI Proxy driver
Hiding files Intercept queries SSDT hooks
Leaking GPS Manipulate service keys Registry
Keylogging Capture keyboard inputs ~ Keyboard driver

Table 1: Rootkit Features of BOOTKITTY on Windows.

tines, allowing it to exclude specific keys from queries. Fourth,
network sockets are concealed by hooking driver handlers in
the NSI Proxy driver, filtering connection tables to remove
targeted entries. Fifth, files can be hidden using SSDT hooks
to intercept directory queries and manipulate directory infor-
mation structures, masking specific files. Sixth, location data
can be manipulated by hooking a Registry function, enabling
the modification of the Windows location service registry key
and providing access to the service. This allows the rootkit
to use the service uninterrupted, even when GPS services
are disabled. Lastly, keylogging is implemented by hooking
keyboard drivers to intercept and log input while maintain-
ing normal functionality. These techniques demonstrate how
effectively the BOOTKITTY’s rootkit can subvert core sys-
tem operations. To implement these functions, we leveraged
widely available code and established techniques [3].

5 BOOTKITTY on Linux

This section details varying mitigation techniques to safe-
guard a boot process in Linux, followed by the design and
implementation of BOOTKITTY on Linux.

5.1 Boot Process Safeguards in Linux

Shim-based Protection. Shim [100] is a lightweight pre-
bootloader for UEFI systems, primarily designed to act as
an intermediary between UEFI (that enforces Secure Boot)
and a second-stage bootloader like GRUB2. A majority of
Linux distributions (e.g., Ubuntu, Fedora, Debian, SUSE, Red-
hat) use GRUB?2 that is not signed by Microsoft, and cannot
run directly under Secure Boot. Shim resolves this issue by
serving as a trusted bridge to securely load GRUB2 and the
Linux kernel. In Linux, Shim implements a UEFI protocol
(shim_lock_protocol [38]) that provides secure communi-
cation between Shim and GRUB2. This protocol locks boot
parameters, prevents unauthorized modifications, and verifies
the signatures of loaded components. Besides, the protocol
facilitates state communication to ensure that only autho-
rized kernel images are executed. By rigorously validating
signatures, the protocol maintains a continuous chain of trust,
effectively blocking untrusted binaries from running.

308 19th USENIX WOOT Conference on Offensive Technologies

USENIX Association

\.

Infection (§5.2) Operation (§5.3) bypassed
/7 . ™ f \ (o)
Installer (Linux) Bootkit (§5.3.1) Rootkit Installation (§5.3.2) Rootkit
I1: LPE Operation
bootkitty.bin : CVE-2024-35235 i - RS5: creat (§5.3.3)
<«€—— CVE-2024-47177 B1: Shim Rd: injector.so create
CVE-2024-5290 (ﬁ rootkit.ko — IOCTL
+ 12: download + dropper.ko / \
. it
l bootkit.bin |13¢ create rootkit B2: grubx64.efi + mo load bot.bin
(root priv.) | > payload (self-signed bootkit) m (C&0)
g R3: init £

v

7

v 14: LogoFail Firmware B3: grubx64.efi

(hooked) | Ra. gisable k+/
+ /\L

(org., hooked) Kernel module pm—— .
code exec. | I5: MOK R1: vmlinuz signing i Remote
logo.BMP | — 3 | " e 1@“’ - ymlinux AppArmor i server
\> reboot Meememeememeememeennn
UEFI Boot Integrity Linux [Kernel ' /AppArmor User Perm.
Boot b
Firmware pessten) (A0S Loader " Check Kernel | Signing ' (SELinux Space | Monitor

Figure 3: Overview of BOOTKITTY on Linux. The infection phase exploits Local Privilege Escalation (LPE) vulnerabilities to
install a malicious bootkit and execute arbitrary code through a fabricated boot logo. The bootkit loads a tampered bootloader to
bypass integrity checks, while the rootkit disables security mechanisms and injects itself into critical system processes.

Linux Security Module. The Linux Security Module
(LSM) [111] enhances kernel security by integrating hooks
that monitor and control critical operations. Prominent imple-
mentations, such as SELinux and AppArmor [12], are based
on MAC. (D SELinux regulates the interactions between pro-
cesses and files, mitigating the risk of privilege escalation
and unauthorized access. It supports three operational modes:
enforcing, permissive, and disabled, offering flexibility in se-
curity management. Q) AppArmor enforces path-based access
control through application-specific profiles. These profiles
restrict resource access, prevent unauthorized actions, and
strengthen security through compliance enforcement.

Kernel Module Signing. Kernel module signing ensures that
only trusted modules are loaded into the system, protecting
kernel integrity from malicious modifications. Each module is
digitally signed during compilation using a private key. When
loaded, the kernel verifies the signature with a trusted public
key and rejects any unsigned or altered modules.

5.2 Bootkit Infection on Linux

Exploitation Overview. BOOTKITTY initiates its operation
by chaining CVEs to escalate privileges. Then it downloads
and executes a payload to inject a malformed boot image to
NVRAM. By exploiting the UEFI’s LogoFAIL [17] vulnera-
bility, BOOTKITTY bypasses Secure Boot, deploying a rootkit
by enrolling a MOK to load self-signed EFI files. This en-
sures persistence by loading the rootkit during boot. Figure 3
illustrates the overview of BOOTKITTY on Linux, where the
following phases describe its infection.

Local Privilege Escalation. First, BOOTKITTY ob-
tains a root permission with LPE by chaining three 1-day

Proof-of-Concept (PoC)s: CVE-2024-35235 [76], CVE-2024-
47177 [77], and CVE-2024-5290 [78]. These exploits lever-
age vulnerabilities in the Common Unix Printing System
(CUPS) [98] and the D-Bus interface to execute arbitrary
code with root privileges.

Payload Preparation. Next, BOOTKITTY downloads the
payload binary (bootkit.bin), which contains exploitable
code embedded in a BMP image to trigger the UEFI’s Logo-
FAIL vulnerability, along with a rootkit payload.

Rootkit Generation. First, it generates the rootkit pay-
load, which will be loaded into the kernel at a later stage.
Note that this payload is stored as injector.so for rootkit
driver installation (R4]). Second, BOOTKITTY overwrites the
malformed image into NVRAM, which is used as the boot
logo during startup.

LogoFAIL Vulnerability Trigger for Secure Boot By-
pass. BOOTKITTY then exploits the LogoFAIL vulnerability
(CVE-2023-40238 [73]), a UEFI firmware flaw disclosed back
in 2023, to bypass Secure Boot. LogoFAIL is a critical vulner-
ability that affects image parsers in UEFI firmware from the
EFI Development Kit 2 (EDK?2) [101] open-source project. In
essence, this exploit allows the firmware to trigger an out-of-
bounds write for arbitrary code execution during the Driver
Execution Environment (DXE) [115] phase in UEFI. This can
be done by writing a malformed BMP image (e.g., 1logo.bmp)
to the EFI partition and modifying NVRAM settings to enable
the custom boot logo. We elaborate the exploitation process
for interested readers in Appendix (Appendix A).

Enrolling Custom MOK. Triggering LogoFAIL,
BOOTKITTY injects a well-crafted shellcode that enrolls a
custom MOK for maintaining persistent control over the boot
process. Note that this process entails the loading of self-

USENIX Association 19th U

SENIX WOOT Conference on Offensive Technologies 309

signed (unauthorized) EFI files.

5.3 BoOOTKITTY Operations on Linux
5.3.1 Bootkit Operation

Figure 3 (middle) illustrates the initialization process of the
BoOTKITTY’s Bootkit operation. A standard Linux boot-
ing begins with a signed bootloader, Shim, which enables Se-
cure Boot by loading a verified OS bootloader (e.g., GRUB2).
BOOTKITTY leverages a trusted Shim to load the next stage
without raising any security alarms. Next, BOOTKITTY
loads a self-signed GRUB2 bootloader (grubx64.efi) and
set up function hooking on the original GRUB2. It is worth
noting that BOOTKITTY can bypass Secure Boot because of
the custom signature that is enrolled in the MOK database,
The self-signed GRUB2 subsequently loads the origi-
nal GRUB2 bootloader with multiple code patches applied.
Notably, the GRUB2 verifier is thwarted at this stage. It also
hooks the start_image) function responsible for loading the
compressed Linux kernel (i.e., vimlinuz) for further control.

5.3.2 Rootkit Installation

As depicted in Figure 3 (right), BOOTKITTY installs a se-
ries of hooks within the kernel process to facilitate rootkit
installation on the system. Once the Linux system transi-
tions to kernel space, the kernel decompresses and resumes
execution. Because hooking the compressed image (i.e., ap-
plying patches that take effect after decompression) is com-
plex, we instead wait for the decompression process to com-
plete. Specifically, BOOTKITTY hooks the decompression
function (decompress_kernel ()) in vmlinuz and waits for the
OS to generate a raw Linux kernel image (vmlinux), at which
point we install another hook. At this stage, BOOTKITTY
patches critical kernel functions to disable Linux security mit-
igations. In particular, it modifies aa_audit_file() to always
return 0, effectively disabling AppArmor, and patches the ker-
nel module signing code to circumvent signature enforcement.
To prepare for the rootkit installation, BOOTKITTY tar-
gets init, the first user-space process. It locates the address
of envp_init() and modifies an environment variable for
the init process. Specifically, we configure the kernel to
launch init with the LD_PRELOAD setting, ensuring that the
rootkit installer loads the implanted library (injector.so)
alongside the initial process. When the rootkit injector
takes control from the init process, the file system is not
yet fully initialized, preventing the creation of the rootkit
driver (rootkit.ko). To handle this, the dropper module
(dropper. ko) monitors the login process (gdm3) as an indica-
tor that system initialization is complete. When the gdm3
becomes active, it creates and loads the rootkit kernel mod-
ule (rootkit.ko), completing the rootkit installation. Since
kernel module signing and AppArmor mitigations are suc-

Functionality Interception Means Exploitation

Unlink kernel structures Module list
Kernel output

Hiding modules
Hiding processes Hook getdents64()
Hiding sockets Hook tcp4_seq_show() Kernel output
Hiding files Hook getdents64() Kernel output
Keylogging Capture keyboard inputs Device

Table 2: Rootkit Features of BOOTKITTY on Linux.

cessfully invalidated, BOOTKITTY can now load the custom
rootkit driver without restriction.

5.3.3 Rootkit Operation

Table 2 summarizes five key features that BOOTKITTY can
offer as a rootkit. Similar to Windows, the rootkit conceals a
certain module by unlinking its corresponding kernel struc-
ture, thereby disappearing the module name in the system.
To hide a particular process, a network socket, or a file, the
rootkit intercepts kernel functions such as getdents64() that
retrieves process or file information and tcp4_seq_show()
that displays network socket information, which are responsi-
ble for generating an output. Lastly, the rootkit provides the
keylogging feature by reading inputs directly from a keyboard
device and storing them into a local file.

6 BOOTKITTY on Android

Android devices may vary significantly across manufacturers,
resulting in fragmentation issues, such as differences in soft-
ware and hardware implementations. This section focuses on
the multi-layered security features of Samsung-manufactured
Android mobile devices, running on the ARM architecture.

6.1 Boot Process Safeguards in Android
6.1.1 Secure Boot Chain

ARM Exception Levels. ARM Exception Levels (EL) [13]
define execution privileges. EL3 (Secure Monitor Mode) man-
ages transitions between the Secure World, for sensitive oper-
ations like the Trusted Execution Environment (TEE) [8,21],
and the Normal World running Android. EL1 (Kernel Mode)
is used for the OS kernel, while ELO (User Mode) runs user-
space applications. This hierarchy ensures secure isolation of
critical processes.

Secure Boot. The Android security framework is tightly cou-
pled with hardware to provide a chain of trust. The Secure
Boot in Android [5] is analogous to those in Windows and
Linux, which ensures that only signed (i.e., trusted) firmware
and boot components are loaded. The secure boot chain
begins with the Boot ROM running at EL3 in the Secure
World. The Boot ROM initializes hardware and verifies the

310 19th USENIX WOOT Conference on Offensive Technologies

USENIX Association

Infection (§6.2) Operation (§6.3) bypassed
(Bootkit Installer (§6.2.1) \ (Bootkit (§6.3.1) Rootkit (§6.3.2)\
- N ~N reboot /-\A
boot .
ﬁ Little Kernel up_param partition Y disable dropper.ko —»
artition
. I2: GUID p (86.2.2) (kernel patch) ‘l,hook
Physical partition table 14: Bootkit I5: Custom Kernel
access 7 payload ram-disk mitigations SYS_}eaftI)lleCﬂﬂ
flash CVE-2024-20865 /| - —
¢ % kernel patched SELinux || Capability check * ook
! patcher ik /init Intearity check v
I1: Download I3:JPEG DEFEX ntegrity chec Mirroring
Mode parser) ramdisk dropper.ko RKP Usermode helper Eavesdropping
overwrite Keylogging
ROdata protection Canturin
\\ CVE-2024-20832_) \ _)) R pturing J
Odin ARM Little (Trusted | [root Android "SELINUX" (fntegrity User Warranty Protected
Boot ROM PreLoader gy, Fireware | Kernel ' 'boot ' [PeM." : Kerne] ('DEFEX | | check : level bit screen

Figure 4: Overview of BOOTKITTY on Android. The attack chain involves exploiting Odin mode and vulnerabilities in the LK
bootloader to install a persistent payload. The bootkit modifies the boot partition and kernel, disabling security mechanisms such
as SELinux, Defeat Exploit (DEFEX), and Real-time Kernel Protection (RKP). The rootkit then hooks into the system call table
and enables malicious activities like mirroring, keylogging, and data capture while it bypasses integrity checks.

preloader, which is running on EL3. Then, it loads ARM
Trusted Firmware to set up TEE, which runs the secure
OS (e.g., TEEGRIS [92]). At the same time, the preloader
switches to the Normal World to initialize the LK at EL1. The
LK then loads and starts the Android OS at ELO. This process
ensures the Secure and Normal Worlds operate independently
while securely transitioning between stages.

6.1.2 Multi-Layered Security Architecture in Android

Trusted Boot. Trusted Boot [90] is Samsung’s implementa-
tion of Google’s Verified Boot. It verifies bootloaders, kernels,
and platform builds to prevent unauthorized or outdated ver-
sions from compromising the system. Besides, Trusted Boot
captures snapshots of the system state during boot and se-
curely stores them in TrustZone [81]’s TEE. A Trustlet [51]
evaluates these snapshots and triggers a special bit (e.g., Knox
Warranty Bit) if it detects outdated or tampered components,
such as unsigned kernels or disabled security features. This
mechanism ensures device integrity beyond Secure Boot by
validating signatures.

Security Enhancement. Security Enhancement (SE) for An-
droid [23] enhances OS-level security through MAC enforce-
ment. It applies MAC at two levels: kernel and middleware.
At the kernel level, SELinux policies restrict access to sen-
sitive resources by embedding access check hooks. At the
Middleware level, Middleware MAC (MMAC) [20] extends
these controls to inter-component communication, ensuring
secure interactions between Android applications and sys-
tem components. By integrating these layers, SE for Android
achieves data isolation, limits root privileges, and protects
applications from unauthorized access.

TrustZone-based Integrity Measurement Architecture.

The TrustZone-based Integrity Measurement Architecture
(TIMA) [30] safeguards kernel integrity by leveraging Trust-
Zone’s Secure World. It continuously monitors the Android
kernel for unauthorized modifications using mechanisms such
as Periodic Kernel Measurement (PKM) [30] and RKP [91].
PKM conducts periodic scans to detect the signs of kernel
tampering, while RKP actively enforces kernel integrity by
intercepting and blocking unauthorized modifications to code,
data, and control flows in real time. By integrating these pro-
tections, TIMA strengthens system resilience against sophis-
ticated kernel-level attacks.

DEFEX. DEFEX [87] surveils the abnormal behaviors of an
application and mitigates potential threats. It can automat-
ically terminate the application that attempts unauthorized
actions, such as LPE attacks.

6.2 Bootkit Infection on Android

Exploitation Overview. Figure 4 illustrates the overview of
BOOTKITTY on Android. We develop the bootkit installer
and bootkit based on the publicly available PoC [16]. The
bootkit installation begins by enabling download mode (also
known as the Odin mode) on the target Android device. This
allows the flash of the GUID Partition Table (GPT) [105]
without authentication (CVE-2024-20865 [75]) and modifies
the Partition Information Table (PIT) [40] to insert a mali-
cious payload. A heap overflow vulnerability (CVE-2024-
20832 [74]) exists in LK’s custom JPEG parser. The ex-
ploitation flashes a crafted JPEG file to the up_param par-
tition, which leads to arbitrary code execution and persistence.
Finally, the bootkit installer deploys a kernel patcher and a
custom ramdisk. It disables security mitigations and enables
stealthy kernel module loading, which demonstrates the risks

USENIX Association

19th USENIX WOOT Conference on Offensive Technologies 311

of weak validation in critical boot components.

Activating Download Mode. The bootkit installation re-
quires physical access to the target Android phone to activate
the Download Mode. This specialized mode is triggered by
a hardware button combination while the device is powered
off. If the phone is on or locked, we can force a shutdown to
enable Download Mode, allowing USB communication for
low-level operations like firmware flashing. Physical access
is critical, as it enables direct manipulation of the boot se-
quence for subsequent attack phases. Once Download Mode
is enabled, we flash the malicious bootkit installer to the de-
vice. The installer exploits vulnerabilities in GPT during the
flashing process, targeting the LK bootloader.

Flashing Payload. Samsung’s Odin tool, used for flash-
ing firmware in Download Mode, typically verifies image
signatures before installation. However, a vulnerability (CVE-
2024-20865 [75]) allows an attacker to flash the GPT without
authentication. By exploiting this, BOOTKITTY can modify
GPT to update PIT, enabling the flashing of arbitrary data, in-
cluding the partition (e.g., up_param) containing a malformed
JPEG (e.g., secure_error. jpg) for further exploitation.

JPEG Parser Heap Overflow. The custom JPEG parser
has a heap overflow vulnerability (CVE-2024-20832 [74])
due to missing file size validation. After flashing a malicious
JPEG to the up_param partition, we trigger the overflow, en-
abling arbitrary code execution and persistence, as up_param
is not verified during boot. This allows the bootkit installer
to write its payload into up_param, which stores boot-related
configurations and assets. We detail the vulnerability in (Ap-
pendix B).

Kernel Patcher Deployment. BOOTKITTY writes the
bootkit payload into the up_param partition. The payload con-
sists of a kernel patcher that disables security mitigations and
a ramdisk payload that replaces the device’s existing ramdisk
to allow persistent modifications.

Loading Kernel Modules via Custom Ramdisk. Finally,
BOOTKITTY injects a specially crafted payload into the boot
partition. The modified ramdisk contains (D a patched init
process to ensure execution of the attacker’s payload at boot,
and @ a kernel module (dropper.ko) that loads additional
malicious code. Our method utilizes a custom ramdisk to
covertly load malicious kernel modules. By preparing the cus-
tom ramdisk, BOOTKITTY establishes persistence, enabling
the attacker to execute arbitrary code upon every reboot.

Building a Custom Ramdisk. A custom ramdisk is crucial
for bypassing Android’s security mechanisms and stealthily
loading a malicious kernel module. While Android enforces
kernel integrity, its support for dynamic module loading
presents an exploitable opportunity. To leverage this, we
construct a custom ramdisk by modifying the boot image
(boot.img), which contains the primary bootloader and ini-
tial filesystem. Inside this partition, the ramdisk provides
essential scripts and binaries, including init, the system’s

Bypassed Mitigation Patch Region Location Name

(D SELinux Code sel_write_enforce()
@ DEFEX Code task_defex_enforcing()
B® RKP Code rkp_initQ

@ Capability check ~ Code
® Integrity check Code
©® Unsermode helper Data
(@ ROData protection Code

security_capable()
security_integrity()
USERMODEHELPER_PATH
mark_rodata_ro()

Table 3: Summary of Bypassing Android Mitigations.

initialization process. By extracting the ramdisk, we iden-
tify init as the core entry point for system initialization. We
modify init to execute custom shellcode, using openat(),
finit_module(), and close() to load a kernel module. The
modified init and the malicious module are then repacked
into a custom ramdisk, allowing us to inject our payload be-
fore security mechanisms activate. To further evade detec-
tion, we embed the modified ramdisk into a disguised file
(secure_error. jpg). A patched LK routine extracts this data
and overwrites the existing ramdisk in memory, modifying the
Device Tree to reflect updated hardware configurations. These
modifications enable arbitrary kernel module loading, effec-
tively bypassing Android’s kernel mitigations and making
low-level exploitation possible via boot-time manipulation.

6.3 BOOTKITTY Operations on Android
6.3.1 Bootkit Operation

Achieving arbitrary code execution in the kernel is essential
for loading a malicious driver for a rootkit. To achieve this,
BoOOTKITTY disables or bypasses key mitigations in the An-
droid kernel, as shown in Figure 4 (right). We summarize the
techniques and patch locations (i.e., code or data) to bypass
these mitigations in Table 3.

Bypassing Android Mitigations. (D (Disabling SELinux En-
forcement) BOOTKITTY disables SELinux by modifying its
core enforcement mechanisms. Most Android devices run
SELinux in enforcing mode, which logs and blocks unau-
thorized actions. By analyzing the Android kernel, we iden-
tify and patch key functions (e.g., sel_write_enforce()) re-
sponsible for enforcing SELinux policies. This effectively
bypasses security checks and allows for unrestricted execu-
tion of unauthorized actions. @) (Disabling DEFEX in Sam-
sung Knox) DEFEX is supposed to prevent privilege esca-
lation by restricting specific process execution, which is en-
forced via task_defex_enforce(). By patching this function,
BoOOTKITTY disables Samsung Knox’s DEFEX security fea-
ture. Q) (Circumventing RKP) Next, BOOTKITTY circum-
vents Android’s RKP by modifying memory protection pa-
rameters. RKP is initialized via rkp_init (), which enforces
protection on data (e.g., rodata) and code regions to pre-
vent kernel modifications. One critical parameter, endrodata,
marks the boundary of the rodata section. By modifying

312 19th USENIX WOOT Conference on Offensive Technologies

USENIX Association

endrodata, we extend the writable range of rodata, allowing
modifications to otherwise protected memory. @ (Bypassing
Kernel Capability Restrictions) The Linux kernel enforces
fine-grained privilege controls through capabilities (e.g., bind-
ing low ports, changing file ownership). BOOTKITTY modi-
fies security_capable() to force these security checks to
always succeed, effectively bypassing permission restric-
tions and granting unauthorized access to privileged oper-
ations. ® (Evading Android Integrity Checks) To bypass
Android’s integrity verification mechanisms, BOOTKITTY
modifies security_integrity(), which checks whether sys-
tem files and configurations remain unaltered. As a result,
unauthorized modifications go undetected. ® (Hijacking
Kernel-Invoked User-Space Processes) BOOTKITTY mod-
ifies USERMODEHELPER_PATH, which stores the execution path
for user-space helper programs invoked by the kernel. By
altering this path, BOOTKITTY tricks the system into execut-
ing malicious user-space programs. () (Preventing Kernel
Memory from Read-Only) Finally, BOOTKITTY prevents the
kernel from enforcing write protection on read-only sections
(e.g., rodata) by patching mark_rodata_ro(). The kernel in-
vokes this function during initialization, and once enforced,
any modification, such as hooking the syscall table, causes
a kernel crash. However, the above patch allows continuous
tampering with protected kernel memory, facilitating long-
term persistence of malicious components.

Bypassing Warranty Bit Validation. The Android device
validates the warranty bit during boot to detect unauthorized
modifications to the system. To preserve the warranty bit [88],
we carefully determine the optimal timing for kernel patch-
ing. We apply the patch immediately after this validation to
ensure kernel modifications did not notice the modified war-
ranty bit. As a result, Knox-enabled features such as Samsung
Pay [89] remain functional, allowing an adversary to conceal
the presence of a rootkit.

6.3.2 Rootkit Operation

Unlike traditional rootkits on Windows or Linux, the imple-
mentation of the BOOTKITTY’s rootkit on Android demands
substantial effort to address challenges arising from undocu-
mented system internals and stringent security mechanisms.
This section presents the technical details (and challenges) in
the design and implementation of BOOTKITTY.

Syscall Table Hooking. The rootkit’s core functionality
involves hooking the syscall table to intercept and manip-
ulate user interactions on the mobile device. The syscall
table resides in the rodata section, marked as read-only
by the set_mark_ro_data() function and protected by the
rkp_init() mechanism. These hypervisor-enforced protec-
tions ensure syscall table integrity. Hooking the syscall ta-
ble is challenging due to its dynamic population during run-
time and lack of symbol exposure, making it inaccessible
through tools like kallsyms [55]. To locate it, we first build

the manufacturer-provided kernel. Using a debugger, we iden-
tify the syscall table by its well-known signature and sur-
rounding addresses. Once located, we calculate the necessary
symbol offsets. To exploit the syscall table, a bootkit patches
rkp_init() and mark_rodata_ro(), disabling write protec-
tion for rodata, making the syscall table writable. With write
permissions enabled, we hook the syscall table, modifying
entries to execute arbitrary code.

Keylogging. On touch-based devices like smartphones, user
input is processed through touch events managed by the ker-
nel’s input subsystem. The input_register_handler() func-
tion can be used to iterate through input handlers and identify
the touch input device (e.g., touch screen). During touch input
processing, raw coordinates from the touchscreen are adjusted
to match the device’s display resolution. This ensures accu-
rate mapping of touch events to the screen. Once adjusted, the
coordinates are used for further processing, including virtual
keyboard input. The activation status of the virtual keyboard
Ul is determined by reading the cmd_result file, which is as-
sociated with the Touch Screen Processor (TSP) [7] driver. On
the rootkit side, a kernel thread periodically monitors this file
and processes touch data only when the keyboard Ul is active.
To be specific, keyboard input is captured by predefining an
array of coordinate values corresponding to each key. When
touch coordinates fall within a key’s bounds, the associated
key information is logged.

Eavesdropping. PCM data interception enables real-time
eavesdropping on microphone or speaker activity in Android
audio processing. Android relies on Pulse Code Modulation
(PCM) [28], a standard format for digital audio data. PCM de-
vices handle audio input and output, with raw data processed
at the kernel level through callback functions defined in the
snd_pcm_ops structure. A critical function in this structure is
copy_user (), which transfers PCM data between user space
and kernel space. By hooking this function, we can intercept
PCM data being processed by the system. The intercepted
data can then be decoded and reconstructed into audio signals.

Bypassing Android Screen Capture Restrictions. An-
droid restricts screen capture and recording on sensitive
screens using the eHidden and eSecure flags, managed by
the SurfaceFlinger graphics system. These flags prevent
screen capture and mirroring on protected screens. To by-
pass the restrictions, we hook the CreateSurface() function.
Hooking requires injecting a malicious library into the target
process, which then modifies CreateSurface() to disable the
eHidden and eSecure flags. As a result, screen capture and
mirroring become possible on restricted screens.

Screen Mirroring. To enable real-time screen mirroring, we
install a ffmpeg [33] binary on the device. Upon receiving
a command from the C&C server, we execute the built-in
screenrecord program to capture video data from the target
application. The captured data is then piped to ffmpeg, which
applies the appropriate encoding options to convert it into the

USENIX Association

19th USENIX WOOT Conference on Offensive Technologies 313

MPEG-TS format. Finally, the converted data is streamed in
real time to the C&C server.

7 Implementation

We implement BOOTKITTY as a multi-platform bootkit-
rootkit targeting Windows, Linux, and Android, designed to
establish early and persistent control with minimal attacker
interaction. Our goal is to build a cohesive framework by
selectively applying known techniques only when they meet
strict criteria: availability, effectiveness, stealth, compatibil-
ity with the latest OS versions, and demonstrated reliability.
While the Windows component builds on well-documented
prior works [1,97], the Linux and Android implementations re-
quired substantial engineering effort due to scarcity of existing
references and the need for custom chaining and debugging
mechanisms.

Initial Stage Exploitation. Our approach automates the in-
fection process and minimizes manual steps for the attacker.
For Windows, we use a BadUSB input generator [27], which
mimics keyboard input via a crafted USB dongle. The in-
jected keystrokes download the BOOTKITTY payload from
an external server and escalate privileges by simulating a
“Y” (i.e., yes) input to approve the User Account Control
(UAC) [69] prompt. The attacker only needs to plug in the
BadUSB device for less than 10 seconds. Once done, the
BOOTKITTY installer infects the system and activates on the
next reboot. For Linux, the crafted keyboard input downloads
and executes the payload on the target system. Since Linux
lacks UAC restrictions, the attack requires running a LPE ex-
ploit to gain root access. For Android, the attacker physically
connects the target device via USB. The device is forcibly
booted into Odin mode [31] through a power cycle. Exploit-
ing CVE-2024-20865 [75] bypasses Odin authentication, en-
abling BOOTKITTY installation.

Cross-Platform Implementation. We develop BOOTKITTY
that integrates bootkit with rootkit capabilities in multi-
platforms. Table 4 summarizes BOOTKITTY implementation.
BOOTKITTY targets Windows, Linux, and Android, employ-
ing a unified strategy: compromising the early boot process
to establish persistent control over the system. In each case,
the attack begins by bypassing integrity verification mecha-
nisms, such as Secure Boot or Trusted Boot, followed by dis-
abling kernel-level security protections to ensure long-term
persistence. While the core logic remains consistent across
platforms (i.e., bypassing integrity checks, disabling kernel
defenses, and maintaining control), the implementation varies
significantly due to differences in OS architecture and secu-
rity models. This approach allows BOOTKITTY to adapt to
each platform while preserving its overall goal of stealthy,
persistent rootkit deployment.

* Windows: We develop modules compatible with Windows
24H2, operating irrespective of hardware restrictions. The

Windows module consists of 2,366 Lines of Code (LoC) for
the bootkit and 5,540 LoC for the rootkit, exploiting CVE-
2022-21894 [72], CVE-2023-24932 [71] to bypass Secure
Boot. During the development of the Windows bootkit mod-
ule, we heavily relied on the BlackLotus bootkit [1]. While
our implementation is primarily inspired by the BlackLotus
bootkit, we selectively adopted techniques from prior work
such as DSE and PatchGuard bypasses from EfiGuard [97],
and hiding mechanisms from the VectorKernel [109] rootkit.
We also incorporated SSDT hooking and keylogging meth-
ods from other rootkits, based on their proven effectiveness
against modern defenses. These choices were made not
solely due to their public availability, but because of their
demonstrated practicality and impact. Each component was
selected and integrated based on its reliability, stealth, and
compatibility with Windows 24H2, the latest version avail-
able at the time of writing. Rather than merely combining
isolated techniques, we developed a cohesive framework
that enhances flexibility and persistence. This design sup-
ports the realistic simulation of modern rootkits and aids
the development of effective defenses.

 Linux: The Linux module targets Ubuntu 24.04.01 with the
6.8.0-31 kernel on the Lenovo IdeaPad Slim 3. We priori-
tize the newest available OS versions and hardware when
known vulnerabilities exist, which led to the selection of this
OS and model. The module consists of 1,074 LoC for the
bootkit and 585 LoC for the rootkit, leveraging CVE-2024-
35235 [76], CVE-2024-47177 [77], CVE-2024-5290 [78],
and CVE-2023-40238 [73] for privilege escalation, along
with the LogoFAIL vulnerability. As of writing, PoCs for
each of the above 1-day vulnerabilities were available, but
no full-chain exploit combining them had been released.
To achieve LPE, we chained three 1-day vulnerabilities,
developing the LogoFAIL PoC from scratch.

Android: The Android implementation is the most chal-
lenging due to debugging obstacles and the undocumented
internals of Android OS. The Android module was tested
on the Samsung Galaxy A325N (Android 4.14.186) as
it requires a high-impact vulnerability, such as bypassing
Odin authentication [75] to evade the secure boot chain
early without complex user interactions. The module com-
prises 315 and 2,866 LoC for the bootkit and rootkit, respec-
tively, exploiting CVE-2024-20865 [75], and CVE-2024-
20832 [74] to manipulate boot parameters and disable secu-
rity mechanisms.

Debugging UEFI Firmware. Debugging UEFI firmware is
challenging due to hardware dependency, lack of persistent
debugging tools, and limited crash recovery. Among the avail-
able debugging methods, we adopted the QEMU emulator
to write exploits. Using Chipsec [58], a firmware analysis
tool by Intel, we dumped the SPI flash region to extract the
UEFI firmware. The vulnerable driver, BmpDecoderDxe, was
then extracted from the firmware using UEFITool [57] and

314 19th USENIX WOOT Conference on Offensive Technologies

USENIX Association

Line of Code

(O] Version Hardware Spec.

1-day Vulnerability

Bootkit

Rootkit

Windows 24H2 (Oct 2024) Any 2,366 (C)

5,540 (C, C++, ASM)

CVE-2022-21894 [72], CVE-2023-24932 [71]

Ubuntu 24.04.01 Lenovo IdeaPad

CVE-2024-35235 [76], CVE-2024-47177 [77],

Linux (kernel: 6.8.0-31) Slim 3 15IAHS 1,074 (C, ASM) 585 (C) CVE-2024-5290 [78], CVE-2023-40238 [73]
. . Galaxy A325N
Android Android 4.14.186 e TS 315 (C.ASM) 2,866 (C. C) CVE-2024-20865 [75], CVE-2024-20832 [74]

Table 4: Overview of BOOTKITTY implementation.

loaded into the virtual environment. Within the UEFI shell,
we retrieved information about the loaded driver, including
its image base address. This address enabled us to rebase
the driver in a local debugger, allowing for precise dynamic
analysis (e.g., consistent memory space information between
the real UEFI environment and the local debugger).

Debugging Android Firmware. We utilize MTKClient [2]
to debug MediaTek SoC-based devices (i.e., Galaxy A325N).
MTKClient exploits chipset vulnerabilities to modify parti-
tions and provides features like rooting, partition dumping,
and firmware flashing. To prepare for debugging, we switch
the device to Boot ROM Mode (BROM Mode) by short-
ing specific mainboard pins. Once in BROM Mode and con-
nected to MTKClient, we examine the firmware’s internal
state. Applying the publicly released 1-day vulnerability re-
quires knowing the internal heap address of our payload and
a controllable buffer address. To achieve this, we modified
the LK bootloader to record memory values in an unused
partition during boot, leaking the necessary information.

Hooking Point Analysis on Linux. Linux bootkits in UEFI
remain relatively underexplored, necessitating a thorough
analysis of the boot process to identify key functions for in-
stalling hooks. We focus on GRUB2 execution, kernel loading,
kernel initialization, and kernel decompression. We identify
patching the start_image () function in the bootloader as the
first step to influence subsequent hooks. The hooked function
then patches decompress_kernel (), allowing arbitrary kernel
modification immediately after the kernel is decompressed
from the vmlinuz image. Finally, we successfully hook the
vmlinux image, the uncompressed, raw Linux kernel.

8 Discussion and Limitations

Limitations. The current version of BOOTKITTY requires
a physical access to the victim’s machine or device for ini-
tial infection. For Windows and Linux, if an adversary could
execute arbitrary commands with SYSTEM privileges on
Windows or root privileges on Linux, BOOTKITTY could re-
motely deploy the bootkit and rootkit modules. However, the
Windows module of BOOTKITTY requires an additional LPE
exploit, as the current version bypasses UAC by simulating
keyboard input instead of using an LPE exploit. For Android,

BoOOTKITTY cannot deploy its code remotely due to the ab-
sence of a powerful low-level vulnerability that would allow
bypassing bootloader authentication for kernel module manip-
ulation. As a final note, although BOOTKITTY has not been
tested in a universal environment due to variations across
systems and devices, we provide valuable insights.

BOOTKITTY Detection. BOOTKITTY compromises the
early boot process (i.e., running before the OS loads), ren-
dering it persistent and undetectable. As the infection occurs
so early, the OS cannot reliably attest to its own integrity.
Hence, hardware-based attestation can help defend against
bootkits. First, UEFI vendors can implement detection mod-
ules to verify boot components before execution, prevent-
ing bootkits from running at startup. Second, monitoring the
MOK list ensures only authorized boot components from the
same manufacturer are loaded, which prevents unauthorized
modifications and maintain boot integrity. Third, continuous
monitoring of boot components after signature verification
enables detection of bootkits even when Secure Boot is by-
passed. This approach addresses a key weakness in traditional
trust-chain models. We leave monitoring module deployment
at the UEFI level as our future work.

BooTKiTTY Mitigation. We discover that memory permis-
sions can significantly ease infiltration for adversaries. During
the UEFI’s DXE phase, drivers’ code sections are configured
with RWX (Read, Write, Execute) permissions by default,
posing a security risk. Similarly, Android’s LK faces the
same permission issue. Introducing fine-grained access con-
trols would increase the difficulty for adversaries to execute
shellcode from an initial vulnerability. Additionally, multiple
layers of security mechanisms must be implemented beyond
Secure Boot to achieve stronger protection in the UEFI envi-
ronment. UEFI currently relies heavily on Secure Boot but
lacks complementary security enhancements. If Secure Boot
is bypassed or disabled, the system becomes highly vulner-
able to a range of attacks. A robust firmware security stack
requires defense-in-depth strategies that do not depend solely
on Secure Boot. Incorporating features like Address Space
Layout Randomization (ASLR) could further impede adver-
saries by making code execution locations less predictable.

USENIX Association

19th USENIX WOOT Conference on Offensive Technologies 315

9 Related Work

Evolution of Bootkits. Early studies, such as BootRoot [96],
Vbootkit [49], and Stoned Bootkit [48], focus on a BIOS-
based bootkit that manipulates the MBR, Volume Boot Record
(VBR) [39], or NT loader (NTLDR) [35, 85]. With the
transition from BIOS to UEFI, new attack surfaces have
emerged. Researchers have identified vulnerabilities in the
UEFI firmware and boot components, highlighting the ex-
panding threat landscape [15, 114]. These findings underscore
the evolution of bootkit attacks, necessitating robust mitiga-
tion strategies.

Evolution of Rootkits. Early malware targeting user-space
programs replaces system binaries with modified versions to
conceal malicious activities, mirroring the primary objective
of traditional rootkits. Notable examples include TOrn [14]
and the SunOS Trojan [59], which manipulate commands
like 1s and ps to hide files, processes, and network connec-
tions while covertly harvesting sensitive data. As OS en-
force a separation between user and kernel spaces to enhance
security, rootkits adapte by shifting their focus to core OS
functions within the kernel space [19]. This evolution leads
to the emergence of true rootkits, such as FU Rootkit [34],
Fivesys [82], Mingloa [86], and Demodex [29] in Windows
environments, alongside Knark [26], Adore [26], Raptile [6],
and Syslogk [80] in Linux environments.

UEFI Attacks and Defenses. The transition from BIOS to
UEFI enhances security (e.g., Secure Boot), boot speed, and
flexibility, however, it inevitably expands the attack surface
accordingly. In UEFI firmware, System Management Inter-
rupts (SMI) [60] handlers are responsible for executing Sys-
tem Management Mode (SMM) code in response to specific
system events. SPENDER [112] discovers the vulnerability
in such SMIs. Similarly, malicious SMM drivers facilitate
rootkit deployment, highlighting critical security gaps [99].
Meanwhile, boot script flaws during the S3 [41] resume pro-
cess introduce a new attack vector [45, 108]. Besides, studies
on the Intel Management Engine (ME) and UEFI firmware
uncovers additional attack vectors [44,79]. In response, UEFI
implements enhanced protections such as SMM isolation and
SMRAM, along with detection mechanisms [50] (e.g., Secure
Boot, Boot Guard [102], Chipsec [58], and UEFITool [57]).

10 Conclusion

Bootkits and rootkits remain one of the most challenging secu-
rity threats due to their ability to evade detection, bypass mod-
ern defenses, and persist at the lowest levels of a system. In
this paper, we present BOOTKITTY, a hybrid bootkit-rootkit
capable of bypassing security mechanisms across Windows,
Linux, and Android. We demonstrate the feasibility of stealthy,
low-level attacks despite existing mitigations. By implement-
ing and analyzing these attacks, we uncover undocumented

system behaviors and low-level vulnerabilities that adver-
saries could exploit. This research highlights critical security
gaps and identifies areas where stronger defenses are needed.
Additionally, we hope that our work lays the groundwork for
enhancing OS security, ultimately strengthening boot-time
and kernel-level protections.

Ethical Considerations

Our research explores the implementation of a bootkit-rootkit
hybrid with the potential for adversarial weaponization. To
mitigate risks and prevent misuse, we have not publicly re-
leased the full source code or binaries. However, we are will-
ing to provide sanitized binaries or source code, excluding ma-
licious payloads such as data exfiltration, to verified research
institutions upon request. This approach strikes a balance
between transparency and responsible disclosure, enabling
reproducibility while minimizing the risk of unethical use.

Artifacts

We provide pre-configured VM and QEMU images that re-
produce the bootkit’s functionality for testing and analysis:

* VM environment: The pre-built VMware VM images are
available for download at https://zenodo.org/recor
ds/15501870

* QEMU virtual disks: The QCOW?2 images, ready to run
on QEMU, are available for download at https://zeno
do.org/records/15582744

Acknowledgements

We thank the anonymous reviewers and our shepherd, Fabio
Pagani, for their feedback and guidance. We are also grateful
to Sumin Hwang and Youngjin Sim for their collaboration on
this project. This work was supported by Institute of Informa-
tion & communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government (MSIT) (No.
RS-2024-00337414; Binary Micro-Security Patch Technol-
ogy Applicable with Limited Reverse Engineering under SW
Supply Chain Environments and No. RS-2024-00437306; De-
velopment of Integrated Platform for Expanding and Safety
Applying Memory-safe Languages), and the KITRI Best of
the Best program. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
sponsor.

316 19th USENIX WOOT Conference on Offensive Technologies

USENIX Association

https://zenodo.org/records/15501870
https://zenodo.org/records/15501870
https://zenodo.org/records/15582744
https://zenodo.org/records/15582744

References

(1]

2
(3]

—

[4]

[5

—_

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

Blacklotus uefi windows bootkit. https://github.com/ldprelo
ad/BlackLotus.

Mitkclient. https://github.com/bkerler/mtkclient.

Vector kernel. https://github.com/daem®OncOre/VectorKern
el, 2023.

AKBAL, E., YAKUT, O. F., DOGAN, S., TUNCER, T., AND ERTAM, F.
A digital forensics approach for lost secondary partition analysis using
master boot record structured hard disk drives. Sakarya University
Journal of Computer and Information Sciences (2021).

ALENDAL, G., DYRKOLBOTN, G. O., AND AXELSSON, S. Foren-
sics acquisition—analysis and circumvention of samsung secure boot
enforced common criteria mode. Digital Investigation (2018).

ALTON, L. Root Kit Discovery with Behavior-based Anomaly Detec-
tion through eBPF. PhD thesis, Technische Universitit Wien, 2024.

ANDROID. Touch devices. https://source.android.com/doc
s/core/interaction/input/touch-devices?hl=en, 2025.

ANDROID OPEN SOURCE PROJECT. Trusty tee. https://source
.android.com/docs/security/features/trusty?hl=en.

ANDROID OPEN SOURCE PROJECT. Android virtualization frame-
work (avf) overview. https://source.android.com/docs/core
/virtualization, 2023.

ANDROID OPEN SOURCE PROJECT. Verified boot. https://sour
ce.android.com/docs/security/features/verifiedboot?h
1=en, 2024.

ANDROID OPEN SOURCE PROJECT. Avf architecture. https:
//source.android.com/docs/core/virtualization/archit
ecture?hl=en#pkm-vendor-modules, 2025.

APPARMOR PROJECT. Apparmor: Linux kernel security module.
https://apparmor.net/, 2024.

ARM. Learn the architecture - aarch64 exception model. https:
//developer.arm.com/documentation/102412/0103/Privil
ege-and-Exception-levels/Exception-levels?lang=en#
md214-exception-levels__fig_exception_levels.

BALIGA, A., CHEN, X., AND IFTODE, L. Paladin: Automated de-
tection and containment of rootkit attacks. Department of Computer
Science, Rutgers University (2006).

BASHUN, V., SERGEEV, A., MINCHENKOV, V., AND YAKOVLEV, A.
Too young to be secure: Analysis of uefi threats and vulnerabilities. In
Proceedings of the 13th Conference of Open Innovations Association
FRUCT (FRUCT 2013) (2013).

BELLOM, M. R., NEVEU, R., MELOTTI, D., AND VIALA, G. At-
tacking samsung galaxy: A boot chain and beyond. Blackhat USA
(2024).

BINARLY. Brly-logofail-2023-003. https://github.com/binar
ly-io/Vulnerability-REsearch/blob/main/LogoFAIL/BRL
Y-LOGOFAIL-2023-003.md, 2023.

BINARLY. Logofail exploited to deploy bootkitty, the first uefi bootkit
for linux. https://www.binarly.io/blog/logofail-explo
ited-to-deploy-bootkitty-the-first-uefi-bootkit-for
-1linux, 2024.

BRAVO, P., AND GARCIA, D. F. Rootkits survey. architecture (2011).

BUGIEL, S., HEUSER, S., SADEGHI, A.-R., AND DARMSTADT, T.
Towards a framework for android security modules: Extending se
android type enforcement to android middleware. Intel Collaborative
Research Institute for Secure Computing (2012).

BuscH, M., WESTPHAL, J., AND MUELLER, T. Unearthing the
trustedcore: A critical review on huawei’s trusted execution environ-
ment. In Proceedings of the 14th USENIX Workshop on Offensive
Technologies (WOOT 2020) (2020).

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

[32]

[33]

[34]
(35]

[36]

[39]

[40]

[41]

CANNOLES, B., AND GHAFARIAN, A. Hacking experiment by using
usb rubber ducky scripting. Journal of Systemics (2017).

CHEN, H., L1, N., ENCK, W., AAFER, Y., AND ZHANG, X. Analysis
of seandroid policies: Combining mac and dac in android. In Proceed-
ings of the 33rd Annual Computer Security Applications Conference
(ACSAC 2017) (2017).

CHIANG, K., AND LLOYD, L. A case study of the rustock rootkit
and spam bot. HotBots (2007).

COOPER, D., POLK, W., REGENSCHEID, A., SOUPPAYA, M., ET AL.
Bios protection guidelines. NIST Special Publication (2011).

DAI Zovl, D. Kernel rootkits. SANS Institute, InfoSec Reading Room
(2001).

DAN GOODIN. This thumbdrive hacks computers. "badusb" exploit
makes devices turn "evil". https://arstechnica.com/informat
ion-technology/2014/07/this-thumbdrive-hacks-compu
ters-badusb-exploit-makes-devices-turn-evil/, 2023.

DOCUMENTATION, A. L. Pcm (digital audio) interface. https://vo
vkos.github.io/doxyrest/samples/alsa/page_pcm.html,
2017.

DOR NIZAR, MALWARE RESEARCHER. The return of ghost em-
peror’s demodex. https://www.sygnia.co/blog/ghost-emper
or-demodex-rootkit/, 2024.

DORIMYAGMAR, M., KiM, M., AND KiM, H. Security analysis of
samsung knox. In Proceedings of the 19th International Conference
on Advanced Communication Technology (ICACT 2017) (2017).

DRAKE, J. J., LANIER, Z., MULLINER, C., FORA, P. O., RIDLEY,
S. A., AND WICHERSKI, G. Android hacker’s handbook. John Wiley
& Sons, 2014.

ESET. Bootkitty: Analyzing the first uefi bootkit for linux. https:
//www.welivesecurity.com/en/eset-research/bootkitt
y-analyzing-first-uefi-bootkit-1linux/, 2024.

FFMPEG DEVELOPERS. Ffmpeg. https://www.ffmpeg.org/,
2023.

FLORIO, E. When malware meets rootkits. Virus Bulletin (2005).

GAo, H., L1, Q., ZHU, Y., WANG, W., AND ZHOU, L. Research
on the working mechanism of bootkit. In Proceedings of the Sth
International Conference on Information Science and Digital Content
Technology (ICIDT 2012) (2012).

GARCIA, L., BRASSER, F., CINTUGLU, M. H., SADEGHI, A.-R.,
MOHAMMED, O. A., AND ZONOUZ, S. A. Hey, my malware knows
physics! attacking plcs with physical model aware rootkit. In Proceed-
ings of the 24th Network and Distributed System Security Symposium
(NDSS 2017) (2017).

GNU. Gnu grub 2 manual. https://www.gnu.org/software/g
rub/manual/grub/grub.html, 2023.

GNU PROJECT. Gnu grub manual 2.12: shim_lock. https://www.
gnu.org/software/grub/manual/grub/html_node/shim_005
flock.html.

GRILL, B., BACS, A., PLATZER, C., AND BOs, H. “nice boots!”—
a large-scale analysis of bootkits and new ways to stop them. In
Proceedings of the 12th DIMVA Conference (DIMVA 2015) (2015).

HA1zAR, N., KEE, D. M. H., CHONG, L. M., AND CHONG, J. H.
The impact of innovation strategy on organizational success: A study
of samsung. Asia Pacific Journal of Management and Education
(2020).

HAN, S., SHIN, W., PARK, J.-H., AND KM, H. A bad dream: Sub-
verting trusted platform module while you are sleeping. In Proceed-
ings of the 27th USENIX Security Symposium (USENIX Security 18)
(2018).

USENIX Association

19th USENIX WOOT Conference on Offensive Technologies 317

https://github.com/ldpreload/BlackLotus
https://github.com/ldpreload/BlackLotus
https://github.com/bkerler/mtkclient
https://github.com/daem0nc0re/VectorKernel
https://github.com/daem0nc0re/VectorKernel
https://source.android.com/docs/core/interaction/input/touch-devices?hl=en
https://source.android.com/docs/core/interaction/input/touch-devices?hl=en
https://source.android.com/docs/security/features/trusty?hl=en
https://source.android.com/docs/security/features/trusty?hl=en
https://source.android.com/docs/core/virtualization
https://source.android.com/docs/core/virtualization
https://source.android.com/docs/security/features/verifiedboot?hl=en
https://source.android.com/docs/security/features/verifiedboot?hl=en
https://source.android.com/docs/security/features/verifiedboot?hl=en
https://source.android.com/docs/core/virtualization/architecture?hl=en#pkm-vendor-modules
https://source.android.com/docs/core/virtualization/architecture?hl=en#pkm-vendor-modules
https://source.android.com/docs/core/virtualization/architecture?hl=en#pkm-vendor-modules
https://apparmor.net/
https://developer.arm.com/documentation/102412/0103/Privilege-and-Exception-levels/Exception-levels?lang=en#md214-exception-levels__fig_exception_levels
https://developer.arm.com/documentation/102412/0103/Privilege-and-Exception-levels/Exception-levels?lang=en#md214-exception-levels__fig_exception_levels
https://developer.arm.com/documentation/102412/0103/Privilege-and-Exception-levels/Exception-levels?lang=en#md214-exception-levels__fig_exception_levels
https://developer.arm.com/documentation/102412/0103/Privilege-and-Exception-levels/Exception-levels?lang=en#md214-exception-levels__fig_exception_levels
https://github.com/binarly-io/Vulnerability-REsearch/blob/main/LogoFAIL/BRLY-LOGOFAIL-2023-003.md
https://github.com/binarly-io/Vulnerability-REsearch/blob/main/LogoFAIL/BRLY-LOGOFAIL-2023-003.md
https://github.com/binarly-io/Vulnerability-REsearch/blob/main/LogoFAIL/BRLY-LOGOFAIL-2023-003.md
https://www.binarly.io/blog/logofail-exploited-to-deploy-bootkitty-the-first-uefi-bootkit-for-linux
https://www.binarly.io/blog/logofail-exploited-to-deploy-bootkitty-the-first-uefi-bootkit-for-linux
https://www.binarly.io/blog/logofail-exploited-to-deploy-bootkitty-the-first-uefi-bootkit-for-linux
https://arstechnica.com/information-technology/2014/07/this-thumbdrive-hacks-computers-badusb-exploit-makes-devices-turn-evil/
https://arstechnica.com/information-technology/2014/07/this-thumbdrive-hacks-computers-badusb-exploit-makes-devices-turn-evil/
https://arstechnica.com/information-technology/2014/07/this-thumbdrive-hacks-computers-badusb-exploit-makes-devices-turn-evil/
https://vovkos.github.io/doxyrest/samples/alsa/page_pcm.html
https://vovkos.github.io/doxyrest/samples/alsa/page_pcm.html
https://www.sygnia.co/blog/ghost-emperor-demodex-rootkit/
https://www.sygnia.co/blog/ghost-emperor-demodex-rootkit/
https://www.welivesecurity.com/en/eset-research/bootkitty-analyzing-first-uefi-bootkit-linux/
https://www.welivesecurity.com/en/eset-research/bootkitty-analyzing-first-uefi-bootkit-linux/
https://www.welivesecurity.com/en/eset-research/bootkitty-analyzing-first-uefi-bootkit-linux/
https://www.ffmpeg.org/
https://www.gnu.org/software/grub/manual/grub/grub.html
https://www.gnu.org/software/grub/manual/grub/grub.html
https://www.gnu.org/software/grub/manual/grub/html_node/shim_005flock.html
https://www.gnu.org/software/grub/manual/grub/html_node/shim_005flock.html
https://www.gnu.org/software/grub/manual/grub/html_node/shim_005flock.html

[42]

[43]

[44]

[45]

[46]

[47]

[48]
[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]
[57]

[58]

[59]

[60]

[61]

[62]

[63]

IBM. Mandatory access control. https://www.ibm.com/docs
/en/aix/7.2?topic=security-mandatory-access-control,
2025.

INSYDE. Insyde official website. https://www.insyde.com/,
2025.

INTEL. What is intel® management engine? https://www.intel.

com/content/www/us/en/support/articles/000008927/sof
tware/chipset-software.html, 2023.

Jiao, W., LI, Q., CHEN, Z., AND CA0, F. Uefi security threats
introduced by s3 and mitigation measure. In Proceedings of the 7th
International Conference on Signal and Image Processing (ICSIP
2022) (2022).

KASPERSKY. Mosaicregressor: Lurking in the shadows of uefi. ht
tps://securelist.com/mosaicregressor/98849/.

KiMm, S., PARK, J., LEE, K., YOU, I., AND YIM, K. A brief survey
on rootkit techniques in malicious codes. J. Internet Serv. Inf. Secur.
(2012).

KLEISSNER, P. Stoned bootkit. Black Hat USA (2009).

KUMAR, N., AND KUMAR, V. Vbootkit 2.0-attacking windows 7
via boot sectors. In Proceedings of the 7th Hack in the Box Security
Conference (HITBSecConf 2009) (2009).

KUZMINYKH, I., AND YEVDOKYMENKO, M. Analysis of security
of rootkit detection methods. In Proceedings of the 1st IEEE Interna-
tional Conference on Advanced Trends in Information Theory (ATIT
2019) (2019).

LAPID, B., AND WOOL, A. Navigating the samsung trustzone and
cache attacks on the keymaster trustlet. In Proceedings of the 23rd
European Symposium on Research in Computer Security (ESORICS
2018) (2018).

L1, X., WEN, Y., HUANG, M. H., AND LIU, Q. An overview of
bootkit attacking approaches. In Proceedings of the 7th International
Conference on Mobile Ad-hoc and Sensor Networks (MSN 2011)
(2011).

LINUX KERNEL DOCUMENTATION. Kernel lockdown. https://ma
n7.org/linux/man-pages/man7/kernel_lockdown.7.html,
2024.

LINUX KERNEL DOCUMENTATION. Kernel mode signing. https:
//docs.kernel.org/admin-guide/module-signing.html,
n.d.

LINUX MAN PAGES. kallsyms - linux manual page. https://man.

cx/kallsyms(8), 2023.
Little kernel. https://github.com/littlekernel/1k.

LONGSOFT. Uefitool - github repository. https://github.com/L
ongSoft/UEFITool, 2023.

LOUCAIDES, J., AND BULYGIN, Y. Platform security assessment
with chipsec. In Proceedings of the 17th CanSecWest Conference
(CanSecWest 2014) (2014).

MANAP, S. Rootkit: Attacker undercover tools. Personal Communi-
cation (2001).

MANNTHEY, K. System management interrupt free hardware. In Pro-
ceedings of the 2nd Linux Plumbers Conference (LPC 2009) (2009).

MATROSOV, A., RODIONOV, E., AND BRATUS, S. Rootkits and
bootkits: reversing modern malware and next generation threats. No
Starch Press, 2019.

MICROSOFT. Kernel patch protection. https://learn.microsof
t.com/en-us/previous-versions/windows/hardware/des
ign/dn613955(v=vs.85)?redirectedfrom=MSDN, 2017.

MICROSOFT. Kernel mode signing. https://learn.microsoft.

com/en-us/windows-hardware/drivers/install/kernel-m
ode-code-signing-requirements--windows-vista-and-1
ater-, 2022.

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(711

[72]

(73]

[74]

[75]

[76]

[(77]

(78]

(791

[80]

[81]

[82]

[83]

MICROSOFT. Virtualization-based security (vbs). https://lear
n.microsoft.com/en-us/windows-hardware/design/devic
e-experiences/oem-vbs, 2023.

MICROSOFT. Bitlocker overview. https://learn.microsoft.co
m/en-us/windows/security/operating-system-security/
data-protection/bitlocker/, 2024.

MICROSOFT. Credential guard. https://docs.microsoft.com
/en-us/windows/security/identity-protection/creden
tial-guard/credential-guard, 2024.

MICROSOFT. Driver signing policy. https://learn.microsof
t.com/en-us/windows-hardware/drivers/install/kernel
-mode-code-signing-policy--windows-vista-and-later-,
2024.

MICROSOFT. Hypervisor-protected code integrity (hvci). https:
//learn.microsoft.com/en-us/windows-hardware/driver
s/bringup/device-guard-and-credential-guard, 2024.

MICROSOFT. User account control overview. https://learn.micr
osoft.com/en-us/windows/security/application-secur
ity/application-control/user-account-control/, 2024.

MICROSOFT LEARN. Overview of boot options in windows. https:
//learn.microsoft.com/en-us/windows-hardware/driver
s/devtest/boot-options-in-windows, 2024.

MICROSOFT SUPPORT. How to manage the windows boot manager
revocations for secure boot changes associated with cve-2023-24932.
https://support.microsoft.com/en-us/topic/how-to-m
anage-the-windows-boot-manager-revocations-for-sec
ure-boot-changes-associated-with-cve-2023-24932-41a
975df-beb2-40c1-99a3-b3££139£832d, 2023.

NIST. Cve-2022-21894: Secure boot security feature bypass vulner-
ability. https://nvd.nist.gov/vuln/detail/CVE-2022-218
94, 2022.

NIST. Cve-2023-40238: Out-of-bounds write in insyde firmware.
https://nvd.nist.gov/vuln/detail/CVE-2023-40238,
2023.

NIST. Cve-2024-20832. https://nvd.nist.gov/vuln/detail
/CVE-2024-20832, 2024.

NIST. Cve-2024-20865. https://nvd.nist.gov/vuln/detail
/CVE-2024-20865, 2024.

NIST. Cve-2024-35235. https://nvd.nist.gov/vuln/detail
/cve-2024-35235, 2024.

NIST. Cve-2024-47177. https://nvd.nist.gov/vuln/detail
/cve-2024-47177, 2024,

NIST. Cve-2024-5290. https://nvd.nist.gov/vuln/detail
/cve-2024-5290, 2024.

OGOLYUK, A., SHEGLOV, A., AND SHEGLOV, K. Uefi bios and intel
management engine attack vectors and vulnerabilities. In Proceding
of the 20th Conference of Open Innovations Association FRUCT
(FRUCT 2017) (2017).

PEREZ, D. A. Syslogk rootkit. executing bots via" magic packets".
The Journal on Cybercrime and Digital Investigations (2023).

PINTO, S., AND SANTOS, N. Demystifying arm trustzone: A com-
prehensive survey. ACM computing surveys (CSUR) (2019).

POGONIN, D., AND KORKIN, I. Microsoft defender will be de-
fended: Memoryranger prevents blinding windows av. arXiv preprint
arXiv:2210.02821 (2022).

REDINI, N., MACHIRY, A., DAS, D., FRATANTONIO, Y., BIANCHI,
A., GUSTAFSON, E., SHOSHITAISHVILI, Y., KRUEGEL, C., AND
VIGNA, G. Bootstomp: On the security of bootloaders in mobile
devices. In Proceedings of the 26th USENIX Security Symposium
(USENIX Security 17) (2017).

318

19th USENIX WOOT Conference on Offensive Technologies

USENIX Association

https://www.ibm.com/docs/en/aix/7.2?topic=security-mandatory-access-control
https://www.ibm.com/docs/en/aix/7.2?topic=security-mandatory-access-control
https://www.insyde.com/
https://www.intel.com/content/www/us/en/support/articles/000008927/software/chipset-software.html
https://www.intel.com/content/www/us/en/support/articles/000008927/software/chipset-software.html
https://www.intel.com/content/www/us/en/support/articles/000008927/software/chipset-software.html
https://securelist.com/mosaicregressor/98849/
https://securelist.com/mosaicregressor/98849/
https://man7.org/linux/man-pages/man7/kernel_lockdown.7.html
https://man7.org/linux/man-pages/man7/kernel_lockdown.7.html
https://docs.kernel.org/admin-guide/module-signing.html
https://docs.kernel.org/admin-guide/module-signing.html
https://man.cx/kallsyms(8)
https://man.cx/kallsyms(8)
https://github.com/littlekernel/lk
https://github.com/LongSoft/UEFITool
https://github.com/LongSoft/UEFITool
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/design/dn613955(v=vs.85)?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/design/dn613955(v=vs.85)?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/design/dn613955(v=vs.85)?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/kernel-mode-code-signing-requirements--windows-vista-and-later-
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/kernel-mode-code-signing-requirements--windows-vista-and-later-
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/kernel-mode-code-signing-requirements--windows-vista-and-later-
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/kernel-mode-code-signing-requirements--windows-vista-and-later-
https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://learn.microsoft.com/en-us/windows/security/operating-system-security/data-protection/bitlocker/
https://learn.microsoft.com/en-us/windows/security/operating-system-security/data-protection/bitlocker/
https://learn.microsoft.com/en-us/windows/security/operating-system-security/data-protection/bitlocker/
https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard
https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard
https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/kernel-mode-code-signing-policy--windows-vista-and-later-
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/kernel-mode-code-signing-policy--windows-vista-and-later-
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/kernel-mode-code-signing-policy--windows-vista-and-later-
https://learn.microsoft.com/en-us/windows-hardware/drivers/bringup/device-guard-and-credential-guard
https://learn.microsoft.com/en-us/windows-hardware/drivers/bringup/device-guard-and-credential-guard
https://learn.microsoft.com/en-us/windows-hardware/drivers/bringup/device-guard-and-credential-guard
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/user-account-control/
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/user-account-control/
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/user-account-control/
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/boot-options-in-windows
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/boot-options-in-windows
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/boot-options-in-windows
https://support.microsoft.com/en-us/topic/how-to-manage-the-windows-boot-manager-revocations-for-secure-boot-changes-associated-with-cve-2023-24932-41a975df-beb2-40c1-99a3-b3ff139f832d
https://support.microsoft.com/en-us/topic/how-to-manage-the-windows-boot-manager-revocations-for-secure-boot-changes-associated-with-cve-2023-24932-41a975df-beb2-40c1-99a3-b3ff139f832d
https://support.microsoft.com/en-us/topic/how-to-manage-the-windows-boot-manager-revocations-for-secure-boot-changes-associated-with-cve-2023-24932-41a975df-beb2-40c1-99a3-b3ff139f832d
https://support.microsoft.com/en-us/topic/how-to-manage-the-windows-boot-manager-revocations-for-secure-boot-changes-associated-with-cve-2023-24932-41a975df-beb2-40c1-99a3-b3ff139f832d
https://nvd.nist.gov/vuln/detail/CVE-2022-21894
https://nvd.nist.gov/vuln/detail/CVE-2022-21894
https://nvd.nist.gov/vuln/detail/CVE-2023-40238
https://nvd.nist.gov/vuln/detail/CVE-2024-20832
https://nvd.nist.gov/vuln/detail/CVE-2024-20832
https://nvd.nist.gov/vuln/detail/CVE-2024-20865
https://nvd.nist.gov/vuln/detail/CVE-2024-20865
https://nvd.nist.gov/vuln/detail/cve-2024-35235
https://nvd.nist.gov/vuln/detail/cve-2024-35235
https://nvd.nist.gov/vuln/detail/cve-2024-47177
https://nvd.nist.gov/vuln/detail/cve-2024-47177
https://nvd.nist.gov/vuln/detail/cve-2024-5290
https://nvd.nist.gov/vuln/detail/cve-2024-5290

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]
[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

RESEARCHERS, E. Lojax: First uefi rootkit found in the wild, courtesy
of the sednit group. Tech. rep., Tech. rep. ESET, 2018.

RoDIONOV, D., MATROSOV, A., AND HARLEY, D. Bootkits: Past,
present and future. In Proceedings of the 24th Virus Bulletin Interna-
tional Conference (VB 2014) (2014).

SALINAS, R. Fantastic rootkits and where to find them (part 2). http
s://www.cyberark.com/resources/threat-research-blo
g/fantastic-rootkits-and-where-to-find-them-part-2,
2023.

SAMSUNG. Defeat exploit. https://docs.samsungknox.com/a
dmin/fundamentals/whitepaper/samsung-knox-mobile-s
ecurity/system-security/defeat-exploit/, 2025.

SAMSUNG ELECTRONICS CO., L. Samsung knox platform for enter-
prise - white paper. https://image-us.samsung.com/SamsungU
S/samsungbusiness/solutions/topics/iot/071421/Knox-W
hitepaper-v1.5-20210709.pdf, 2021.

SAMSUNG ELECTRONICS CO., L. Samsung pay: A secure and
convenient mobile payment solution. https://www.samsung.com/
samsung-pay, 2024.

SAMSUNG KNOX. Trusted boot. https://docs.samsungknox.c
om/admin/fundamentals/whitepaper/samsung-knox-mobil
e-security/system-security/trusted-boot/.

SAMSUNG KNOX. Real-time kernel protection. https://docs.s
amsungknox.com/admin/fundamentals/whitepaper/samsu
ng-knox-mobile-security/system-security/real-time-k
ernel-protection/, 2025.

SAMSUNGDEVELOPER. Samsung teegris. https://developer.
samsung.com/teegris/overview.html.

SELINUX PROJECT. Selinux: Security-enhanced linux. https:
//selinuxproject.org/page/Main_Page, 2017.

SINGH, A., AND BHARDWAJ, A. Android internals and telephony.
Int. J. Emerg. Technol. Adv. Eng (2014).

SMOLAR, M. Blacklotus uefi windows bootkit. https://www.we
livesecurity.com/2023/03/01/blacklotus-uefi-bootkit
-myth-confirmed/, 2023.

SOEDER, D., AND PERMEH, R. eeye bootroot. BlackHat USA (2005).

SUICHE, M. Efiguard. https://github.com/tandasat/EfiGua
rd, 2018. GitHub repository.

SWEET, M. CUPS (Common Unix Printing System). Pearson Educa-
tion, 2001.

SZAKNIS, M., AND SzZCczYPIORSKI, K. The design of the simple
smm rootkit. In Proceedings of the 9th International Conference
on Wireless Communication and Sensor Networks (ICWCSN 2022)
(2022).

TEAM, R. H. B. Shim: A first-stage uefi bootloader. https://gith
ub.com/rhboot/shim/blob/main/README .md, 2024.

TIANOCORE. tianocore-edk2. https://github.com/tianocore
/edk2.

TIANOCORE. Intel® boot guard. https://tianocore-docs.gi
thub.io/Understanding UEFI_Secure_Boot_Chain/draft/s
ecure_boot_chain_in_uefi/intel_boot_guard.html, 2021.

TIANOCORE. Machine owner key (mok). https://tianocore-d
ocs.github.io/Understanding_UEFI_Secure_Boot_Chain/d
raft/additional_secure_boot_chain_implementations/ma
chine_owner_key_mok.html, 2021.

TIANOCORE. Uefi secure boot. https://tianocore-docs.gith
ub.io/Understanding_UEFI_Secure_Boot_Chain/draft/sec
ure_boot_chain_in_uefi/uefi_secure_boot.html, 2021.

UEFI. 5. guid partition table (gpt) disk layout. https://uefi.o

rg/specs/UEFI/2.10/05_GUID_Partition_Table_Format.ht
ml, 2022.

[106] UEFI FORUM. About uefi forum. https://uefi.org/about.

[107] UEFI ForuM. Uefi specification: Secure boot and driver signing.
https://uefi.org/specs/UEFI/2.10/32_Secure_Boot_and_
Driver_Signing.html, 2022.

[108] UEFI ForuM. Uefi platform initialization: S3 resume. https:
//uefi.org/specs/PI/1.9/V5_S3_Resume.html, 2024.

[109] UNDERGROUND MALWARE COMMUNITY. Vectorkernel rootkit,
2021. Known Windows kernel-mode rootkit referenced in security
research and malware reverse engineering discussions.

[110] WANG, Y., Gu, D, L1, W., L1, J., AND WEN, M. Virus analysis
on idt hooks of rootkits trojan. In Proceedings of the International
Symposium on Information Engineering and Electronic Commerce
(ISEEC 2009) (2009).

[111] WRIGHT, C., COWAN, C., SMALLEY, S., MORRIS, J., AND KROAH-
HARTMAN, G. Linux security modules: General security support
for the linux kernel. In Proceedings of the 11th USENIX Security
Symposium (USENIX Security 2002) (2002).

[112] YIN,J., L1, M., WU, W., SUN, D., ZHOU, J., HUuO, W., AND XUE,
J. Finding smm privilege-escalation vulnerabilities in uefi firmware
with protocol-centric static analysis. In Proceedings of the 43rd IEEE
Symposium on Security and Privacy (SP 2022) (2022).

[113] ZHANG, J., L1U, S., PENG, J., AND GUAN, A. Techniques of user-
mode detecting system service descriptor table. In Proceedings of the
13th International Conference on Computer Supported Cooperative
Work in Design (CSCWD 2009) (2009).

[114] ZHOU, Y., PENG, G., L1, Z., AND LIU, S. A survey on the evolution
of bootkits attack and defense techniques. China Communications
(2024).

[115] ZIMMER, V., ROTHMAN, M., AND MARISETTY, S. Beyond BIOS:
developing with the unified extensible firmware interface. Walter de
Gruyter GmbH & Co KG, 2017.

Appendix
A LogoFAIL Vulnerability (CVE-2023-40238)

Manufacturers develop UEFI [106] firmware based on the
EDK?2 [101] open-source project, each implementing unique
image parsers for boot logo rendering. LogoFAIL [17] is a
critical vulnerability in image parsers that exists in the In-
syde, AMI, and Phoenix firmware, occurring early in the boot
process, which amplifying its severity. We selected this vul-
nerability, CVE-2023-40238 [73], for bootkit development
due to its significant impact on the UEFI and boot chain. For
this study, we used a device running the vulnerable firmware
version LTCN30WW. This out-of-bounds write flaw in In-
syde [43] firmware arises during BMP file processing.

Figure 5 illustrates the exploitation process of the Logo-
FAIL vulnerability. The attack follows these steps:

1. EFI Partition (Malicious Image Overwrite):
BOOTKITTY modifies the bootkit.bmp file in the EFI
partition, embedding shellcode inside the image. Then,
the legitimate boot logo is replaced with a malicious
one.

2. NVRAM Modification (Enable Custom Boot Logo):
The system firmware stores boot configuration settings

USENIX Association

19th USENIX WOOT Conference on Offensive Technologies 319

https://www.cyberark.com/resources/threat-research-blog/fantastic-rootkits-and-where-to-find-them-part-2
https://www.cyberark.com/resources/threat-research-blog/fantastic-rootkits-and-where-to-find-them-part-2
https://www.cyberark.com/resources/threat-research-blog/fantastic-rootkits-and-where-to-find-them-part-2
https://docs.samsungknox.com/admin/fundamentals/whitepaper/samsung-knox-mobile-security/system-security/defeat-exploit/
https://docs.samsungknox.com/admin/fundamentals/whitepaper/samsung-knox-mobile-security/system-security/defeat-exploit/
https://docs.samsungknox.com/admin/fundamentals/whitepaper/samsung-knox-mobile-security/system-security/defeat-exploit/
https://image-us.samsung.com/SamsungUS/samsungbusiness/solutions/topics/iot/071421/Knox-Whitepaper-v1.5-20210709.pdf
https://image-us.samsung.com/SamsungUS/samsungbusiness/solutions/topics/iot/071421/Knox-Whitepaper-v1.5-20210709.pdf
https://image-us.samsung.com/SamsungUS/samsungbusiness/solutions/topics/iot/071421/Knox-Whitepaper-v1.5-20210709.pdf
https://www.samsung.com/samsung-pay
https://www.samsung.com/samsung-pay
https://docs.samsungknox.com/admin/fundamentals/whitepaper/samsung-knox-mobile-security/system-security/trusted-boot/
https://docs.samsungknox.com/admin/fundamentals/whitepaper/samsung-knox-mobile-security/system-security/trusted-boot/
https://docs.samsungknox.com/admin/fundamentals/whitepaper/samsung-knox-mobile-security/system-security/trusted-boot/
https://docs.samsungknox.com/admin/fundamentals/whitepaper/samsung-knox-mobile-security/system-security/real-time-kernel-protection/
https://docs.samsungknox.com/admin/fundamentals/whitepaper/samsung-knox-mobile-security/system-security/real-time-kernel-protection/
https://docs.samsungknox.com/admin/fundamentals/whitepaper/samsung-knox-mobile-security/system-security/real-time-kernel-protection/
https://docs.samsungknox.com/admin/fundamentals/whitepaper/samsung-knox-mobile-security/system-security/real-time-kernel-protection/
https://developer.samsung.com/teegris/overview.html
https://developer.samsung.com/teegris/overview.html
https://selinuxproject.org/page/Main_Page
https://selinuxproject.org/page/Main_Page
https://www.welivesecurity.com/2023/03/01/blacklotus-uefi-bootkit-myth-confirmed/
https://www.welivesecurity.com/2023/03/01/blacklotus-uefi-bootkit-myth-confirmed/
https://www.welivesecurity.com/2023/03/01/blacklotus-uefi-bootkit-myth-confirmed/
https://github.com/tandasat/EfiGuard
https://github.com/tandasat/EfiGuard
https://github.com/rhboot/shim/blob/main/README.md
https://github.com/rhboot/shim/blob/main/README.md
https://github.com/tianocore/edk2
https://github.com/tianocore/edk2
https://tianocore-docs.github.io/Understanding_UEFI_Secure_Boot_Chain/draft/secure_boot_chain_in_uefi/intel_boot_guard.html
https://tianocore-docs.github.io/Understanding_UEFI_Secure_Boot_Chain/draft/secure_boot_chain_in_uefi/intel_boot_guard.html
https://tianocore-docs.github.io/Understanding_UEFI_Secure_Boot_Chain/draft/secure_boot_chain_in_uefi/intel_boot_guard.html
https://tianocore-docs.github.io/Understanding_UEFI_Secure_Boot_Chain/draft/additional_secure_boot_chain_implementations/machine_owner_key_mok.html
https://tianocore-docs.github.io/Understanding_UEFI_Secure_Boot_Chain/draft/additional_secure_boot_chain_implementations/machine_owner_key_mok.html
https://tianocore-docs.github.io/Understanding_UEFI_Secure_Boot_Chain/draft/additional_secure_boot_chain_implementations/machine_owner_key_mok.html
https://tianocore-docs.github.io/Understanding_UEFI_Secure_Boot_Chain/draft/additional_secure_boot_chain_implementations/machine_owner_key_mok.html
https://tianocore-docs.github.io/Understanding_UEFI_Secure_Boot_Chain/draft/secure_boot_chain_in_uefi/uefi_secure_boot.html
https://tianocore-docs.github.io/Understanding_UEFI_Secure_Boot_Chain/draft/secure_boot_chain_in_uefi/uefi_secure_boot.html
https://tianocore-docs.github.io/Understanding_UEFI_Secure_Boot_Chain/draft/secure_boot_chain_in_uefi/uefi_secure_boot.html
https://uefi.org/specs/UEFI/2.10/05_GUID_Partition_Table_Format.html
https://uefi.org/specs/UEFI/2.10/05_GUID_Partition_Table_Format.html
https://uefi.org/specs/UEFI/2.10/05_GUID_Partition_Table_Format.html
https://uefi.org/about
https://uefi.org/specs/UEFI/2.10/32_Secure_Boot_and_Driver_Signing.html
https://uefi.org/specs/UEFI/2.10/32_Secure_Boot_and_Driver_Signing.html
https://uefi.org/specs/PI/1.9/V5_S3_Resume.html
https://uefi.org/specs/PI/1.9/V5_S3_Resume.html

(.. \ .
EFT partition (UEFI firmware h
© load NVRAM
bOOtkit.bInp dBMé) custom
hell ecoder boot logo
Py o " exec.
overwri .
image enrolled Qoeltl.alille
MOK ptio
- 2N J

Figure 5: LogoFAIL exploit. The EFI partition is overwritten,
a custom boot logo option is enabled, and the BMP decoder
loads it, triggering shellcode execution to enroll a custom
MOK.

in NVRAM. BOOTKITTY enables the custom boot logo
option in the UEFI [106] firmware settings, ensuring that
the malicious bootkit.bmp is processed at boot.

3. UEFI Firmware (Processing the Malicious Image):
The firmware loads the BMP decoder to process the boot
logo. Due to a vulnerability in the decoder, it incorrectly
processes the malicious image.

4. Exploiting UEFI Execution (Code Execution & Per-
sistence): The embedded shellcode executes during
the decoding process. The attacker then enrolls a
MOK [103], allowing persistence across reboots and
bypassing Secure Boot.

Arbitrary Write to Execute Shellcode. The essence of the
vulnerability is described in Figure 6. As shown in the code,
an attacker can control the input value of height and set
it to zero (Line 6), causing the BltEntry address to point
below BltOutput address. This enables arbitrary writes to a
controllable memory location (Line 11-13), allowing code
execution during the DXE [115] phase. UEFI [106] lacks
W @ X protection (Write XOR Execute) in its memory space,
allowing arbitrary code execution by overwriting the code
section. Specifically, we patch the code to redirect execution
to a crafted image containing the shellcode.

B JPEG Parser Heap Overflow Vulnerability
(CVE-2024-20832)

Samsung introduces a custom JPEG parser in LK to display
logos and error messages at boot. In this parser, the JPEG file
is stored in a fixed-size structure without proper size checks,
resulting in a heap overflow. Owing to the LK’s simplistic
heap algorithm and the lack of mitigation features, an attacker
can exploit this overflow to achieve arbitrary code execution
within LK. Since memory in LK has RWX permissions (i.e.,
Read, Write, and Execute), the shellcode embedded in the
image file can be executed.

int64 fastcall DecodeRLES(

1
2 EFI_GRAPHICS_OUTPUT_BLT_PIXEL *BltOutput,

3 int8 *a2, int64 a3, BMP_IMAGE *Image)

4 {

5 // if height is 0, index becomes negative value

6 BltEntry = &BltOutput[width * (height - i - 1)];

7 .

8 do

9 {

10 // BltEntry points wrong memory -> Arbitrary write
11 BltEntry->Red = “(BYTE *)(a3 + 4 * v16 + 2);

12 BltEntry->Green = *(BYTE *)(a3 + 4 * v16 + 1);

13 BltEntry->Blue = *(BYTE *)(a3 + 4 * v16);

14 ++BltEntry;

15 --v17;

16 }

17 while (v17);

18 }

Figure 6: Code snippet for CVE-2023-46238 [17].

C The BOOTKITTY Incident: Community Re-
sponse and Evaluation

During testing of the BOOTKITTY bootkit on our internal
server (1-16 November, 2024), we uploaded the payload to a
test webserver, as our attack model relied on a BadUSB com-
mand to fetch the initial stage. During this period, an external
crawler accessed the server and retrieved the bootkit binary (5
November, 2024). The crawler flagged the sample due to the
term “Bootkit” in the file name and publicly disclosed its exis-
tence. The sample quickly gained attention as the first publicly
identified Linux bootkit targeting UEFI systems. This mile-
stone sparked interest from both the research community and
the public, with BOOTKITTY being widely referred to as the
“first UEFI bootkit for Linux” [18,32] (27 November, 2024).
The incident highlighted the importance of Secure Boot and
reignited awareness of firmware-level threats [17], challeng-
ing the prevailing assumption that UEFI bootkits target only
Windows systems. It also ignited broad discussions on UEFI
security within both industry and academia. After recognizing
the unintended leak and public analysis, our team promptly
contacted the analysts to clarify that the binary was part of
BOOTKITTY, a research prototype (28 November, 2024). The
analysis report was later updated (2 December, 2024) to re-
flect that BOOTKITTY was developed by a student research
team and was not part of an active threat campaign.

320 19th USENIX WOOT Conference on Offensive Technologies

USENIX Association

	Introduction
	Background
	Threat Model and Challenges
	Threat Model
	Attack Overview
	Challenges

	BootKitty on Windows
	Boot Process Safeguards in Windows
	Bootkit Infection on Windows
	BootKitty Operations on Windows
	Bootkit Operation
	Rootkit Installation
	Rootkit Operation

	BootKitty on Linux
	Boot Process Safeguards in Linux
	Bootkit Infection on Linux
	BootKitty Operations on Linux
	Bootkit Operation
	Rootkit Installation
	Rootkit Operation

	BootKitty on Android
	Boot Process Safeguards in Android
	Secure Boot Chain
	Multi-Layered Security Architecture in Android

	Bootkit Infection on Android
	BootKitty Operations on Android
	Bootkit Operation
	Rootkit Operation

	Implementation
	Discussion and Limitations
	Related Work
	Conclusion
	LogoFAIL Vulnerability (CVE-2023-40238)
	JPEG Parser Heap Overflow Vulnerability (CVE-2024-20832)
	The BootKitty Incident: Community Response and Evaluation

