# Evaluating the Effectiveness and Robustness of Visual Similarity-based Phishing Detection Models

Fujiao Ji\*, Kiho Lee\*, Hyungjoon Koo‡, Wenhao You†, Euijin Choo†, Hyoungshick Kim‡, Doowon Kim\*

University of Tennessee, Knoxville\*
University of Alberta†
Sungkyunkwan University‡



















### Current Anti-phishing Systems: Visual Similarity-based Phishing Defense Models







#### **Current Anti-phishing Systems:** Visual Similarity-based Phishing Defense Models

Reference List of **Benign Websites** 









Potential Phishing Websites





#### Main Research Question

Are these current phishing detection models (visual similarity-based) effective against real-world phishing websites and robust to adversarial strategies?









- Developed a web-crawler that visits phishing websites fed by APWG
- Collected from July 2021 to July 2023
   (25 months) → 6.1M samples
- Obtained 451k samples after removing error pages and sampling





**Retraining:** To ensure fair evaluation, the models should share the same reference knowledge of brands.





Using a real-world phishing dataset and a manipulated dataset to evaluate effectiveness and robustness.



#### Results: Overall Detection Performance

- Detection performance degradation (20.7%) compared to their results on curated datasets

| Models         | Ref.<br>Type | <b>Detection</b> (R <sub>ext</sub> )                               |                                                                   |                                          | Identification (R <sub>ext</sub> ) |                                    |
|----------------|--------------|--------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------|------------------------------------|------------------------------------|
|                |              | N <sub>tp</sub> for D <sub>all</sub><br>(N <sub>p</sub> : 451,514) | N <sub>tp</sub> for D <sub>learn</sub> (N <sub>p</sub> : 312,355) | $N_{tp}$ for $D_{sample}$ $(N_p: 4,190)$ | $ m D_{learn} \ I_{tp}/N_{tp}$     | $ m D_{sample}$ $ m I_{tp}/N_{tp}$ |
| DynaPhish      | Logo         |                                                                    |                                                                   | 22.03%                                   |                                    | 97.94%                             |
| PhishIntention | Logo         | 52.68%                                                             | 66.22%                                                            | 49.07%                                   | 97.72%                             | 98.56%                             |
| Phishpedia     | Logo         | 70.47%                                                             | 87.97%                                                            | 57.16%                                   | 96.67%                             | 92.36%                             |
| Involution     | Logo         | 66.67%                                                             | 84.77%                                                            | 60.57%                                   | 99.64%                             | 97.32%                             |
| PhishZoo       | Logo         | 86.28%                                                             | 86.36%                                                            | 76.13%                                   | 33.26%                             | 9.59%                              |
| VisualPhishNet | Scr.         | 41.33%                                                             | 40.58%                                                            | 33.84%                                   | 66.03%                             | 54.51%                             |
| EMD            | Scr.         | 30.28%                                                             | 31.34%                                                            | 27.45%                                   | 22.91%                             | 20.42%                             |



#### Detection-Failed Cases (Three Adversarial Strategies)

1) Model Pipeline Attack





**Phishing** 







#### Detection-Failed Cases (Three Adversarial Strategies)

1) Model Pipeline Attack 2) Mimic Visualization

Benign





**Phishing** 









#### Detection-Failed Cases (Three Adversarial Strategies)

- 1) Model Pipeline Attack
- 2) Mimic Visualization
- 3) Direct Simple Strategies

Benign





**Phishing** 







Logo Elimination



## Robustness of Visible and Perturbation-based Manipulations



## Robustness of Visible and Perturbation-based Manipulations

- **Logo-based methods** are disrupted for brand identification (Phishpedia: 15.72% for integration, 16% for case conversion);
- **Screenshot-based methods** exhibit lower detection rate (VisualPhishNet: 27.27% on benign samples).

Original

Integration

**Case Conversion** 









#### **Key Takeaways**

- 1. Performance degradation (20.7%) compared to their results on curated datasets
- 2. Need for robust, multi-modal defenses that don't overly rely on single features (e.g., logos or exact visual patterns)
- 3. The dataset is publicly available at <a href="https://moa-lab.net/evaluation-visual-similarity-based-phishing-detection-models/">https://moa-lab.net/evaluation-visual-similarity-based-phishing-detection-models/</a>

