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Deep Learning Models for Binary Analysis

* Numerous deep learning models for binary analysis!
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Deep Learning Models for Binary Analysis

* Numerous deep learning models for binary analysis!

Binary obfuscation is common (e.g., malware)
How robust are DL models against obfuscation?
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Overview

* Preliminary work

* Evaluating ML models against different obfuscation techniques
* Learnability
* Generalizability
* Robustness
* Adaptability
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Public Obfuscation Tools

e IR-based
e Obfuscator-LLVM

e Source-based
* Tigress
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the tigress c obfuscator

linux/darwin/android/windows, intel/arm/webassembly, 32/64, gcé/clang/emcc/cl
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Code Obfuscation Techniques
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Binary Code Similarity Detection Model
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BinShot

¢ B N S h Ot (Practical Binary Code Similarity Detection with BERT-based Transferable Similarity Learning; ACSAC 22)

« BERT-based BCSD model
« MLM Training Task

« Two models are trained on different obfuscation tools
« Evaluate the transferability
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Learning Semantics of Code?

0000000000433fcO® <main>:

433fcO: 55 %rbp

433fcl: 53 %rbx

433fc2: 50 %rax

433fc3: 48 89 f3 %rsi,%rbx

433fc6: 89 fd %edi,%ebp

433fc8: c7 05 1le 28 Oc 00 00 $0x0,0xc281le(%rip)
433fd2: 80 3d 37 3e Oc 00 00 $0x0,0xc3e37(%rip)
433fd9: 75 2d 434008 <main+0x48>

= {Embedding}
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Learning Semantics of Obfuscated Code?

& Graph overview

.llllll.

Jjmp short $+2
] s =1
loc_9C2DC9:
mov eax, [rbp+var_24]
sub eax, BBl6AFCAeh
jz loc_9C30eD
¥
Wi E | (e =
Jjmp short $+2
loc_9C308eD:
mov eax, [rbp+var_8]
pop rbp
retn
s =
loc_9C2DD9:
mov eax, [rbp+var_24]
sub eax, ©B20C17A2h
jz loc_9C2FeD

i =1
jmp short $+2
i =
loc_9C2DB9:
mov eax, [rbp+var_24]
sub eax, OAAAEBS8Ch
jz loc_9C2E78
il s =
loc_9C2DE9:
mov eax, [rbp+var_24]
sub eax, ©OD@4BBECSh
jz loc_9C2EBB
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Overview

BinShot-O-LLVM

Tigress

Tigress

BinShot-Tigress
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RQ1: Learnability

e How learnable is code obfuscation?
* Original BinShot model vs. Obfuscation-aware BinShot model
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RQ1: Learnability Results
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[ Models can learn (to an extent) by training directly on obfuscated code. ]
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RQ2: Generalizability

e Obfuscation-aware model’s performance
* Obfuscated vs. non-obfuscated
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RQ2: Generalizability Results
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[ Achieving generalizability across both obfuscated and non-obfuscated code remains challenging ]
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RQ3: Robustness

e Obfuscation-aware model’s performance
* Known obfuscation techniques (seen during training)
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RQ3: Robustness Results
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Models trained on obfuscated code demonstrate good performance for known obfuscation techniques
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RQ4: Adaptation

e Obfuscation-aware model’s performance
* Unknown obfuscation techniques (unseen during training)
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RQ4: Adaptation Results
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Model’s ability to adapt to an unknown obfuscation technique depends varies depending on the
obfuscation techniques it has encountered
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Limitations

e Alternate models
e How do other BCSD models react?
e How does obfuscation affect other downstream tasks?

* Alternate obfuscation techniques: future work
* Additional techniques in Tigress
» Sophisticated obfuscation techniques from commercial tools
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Thank Youl

* Any Questions?

* We release the experiment code
 https://github.com/SecAl-Lab/bcsd obf sure2025
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Commercial Obfuscation Tools

Advanced Windows software
protection system %, VMProtect Software oducts © News  Support ~

Advanced m

L J
security made
ASPack is an advanced EXE packer created to compress Win32 executable files ani o
protect them against non-professional reverse engineering. Sim ple a nd

The solution makes Windows programs and libraries smaller up to 70% (the compre: relia ble
ratio is higher than the ZIP standard by 10-20%) what leads to a reduction in the dow

time of compressed applications in local networks and the Intemnet because of their

smaller size ECII'ﬂpEFEd to IJI'ICDTTID[ESSECI apps. Protect your software against cracking, analyzing and reverse-

AS Pa(j{ engineering. Make your work safe and secure.
The ASPack exe Compressor also [CIFO'I."iﬂES prr:rtectiorl to prr:ngramsfa Dp"CEltiDﬂS from

) : . il
unprofessional analysis, debuggers and decompilers. Programs compressed with As verview @
are self-contained and run exactly as before, with no runtime performance penalties.
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Commercial Obfuscation Tools

* Why Not?
* Packed/Encrypted Executables
e Deep Learning Models require successful disassembly

 However (Future Work)
* Real World Application
* Sophisticated Obfuscation Techniques
* Dynamic Analysis
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Complications with Tigress

* Changes needed for Tigress
* Generation of merged source
 Alteration of build process (cannot simply use existing Makefile)

* Some compiler compatibility issues
e Clang’s compatibility with Tigress’s custom CIL parser
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