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Deep Learning Models for Binary Analysis

• Numerous deep learning models for binary analysis!
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• Numerous deep learning models for binary analysis!
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Binary obfuscation is common (e.g., malware)
How robust are DL models against obfuscation?



Overview

• Preliminary work

• Evaluating ML models against different obfuscation techniques
• Learnability

• Generalizability

• Robustness

• Adaptability
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Public Obfuscation Tools

• IR-based
• Obfuscator-LLVM

• Source-based
• Tigress
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Code Obfuscation Techniques

Bogus 
Block

Opaque Predicate InsertionBenign Control Flow Flattening



DissimilarSimilar

Binary Code Similarity Detection Model
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BinShot

• BinShot (Practical Binary Code Similarity Detection with BERT-based Transferable Similarity Learning; ACSAC ’22)

• BERT-based BCSD model

• MLM Training Task

• Two models are trained on different obfuscation tools
• Evaluate the transferability
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Learning Semantics of Code?
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push %rbp push %rbx push %rax

mov %rsi %rbx mov %edi %ebp

movl $0x0 0xc2 271e (%rip) cmpb

$0x0 0xc3 e37 (%rip) jne 434

008

push = {Embedding}



Learning Semantics of Obfuscated Code?
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Overview
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BinShot-O-LLVM
O-LLVM

Tigress
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IR

Tigress

O-LLVM
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Compilation

BinShot-Tigress



RQ1: Learnability

• How learnable is code obfuscation?
• Original BinShot model vs. Obfuscation-aware BinShot model
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RQ1: Learnability Results
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Models can learn (to an extent) by training directly on obfuscated code.



RQ2: Generalizability

• Obfuscation-aware model’s performance
• Obfuscated vs. non-obfuscated
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RQ2: Generalizability Results
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Achieving generalizability across both obfuscated and non-obfuscated code remains challenging



RQ3: Robustness

• Obfuscation-aware model’s performance
• Known obfuscation techniques (seen during training)
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RQ3: Robustness Results
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Models trained on obfuscated code demonstrate good performance for known obfuscation techniques



RQ4: Adaptation

• Obfuscation-aware model’s performance
• Unknown obfuscation techniques (unseen during training)
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RQ4: Adaptation Results
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Model’s ability to adapt to an unknown obfuscation technique depends varies depending on the 
obfuscation techniques it has encountered



Limitations

• Alternate models
• How do other BCSD models react?

• How does obfuscation affect other downstream tasks?

• Alternate obfuscation techniques: future work
• Additional techniques in Tigress

• Sophisticated obfuscation techniques from commercial tools
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Thank You!

• Any Questions?

• We release the experiment code
• https://github.com/SecAI-Lab/bcsd_obf_sure2025
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https://github.com/SecAI-Lab/bcsd_obf_sure2025
https://github.com/SecAI-Lab/bcsd_obf_sure2025
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Commercial Obfuscation Tools
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Commercial Obfuscation Tools

• Why Not?
• Packed/Encrypted Executables 

• Deep Learning Models require successful disassembly

• However (Future Work)
• Real World Application

• Sophisticated Obfuscation Techniques

• Dynamic Analysis
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Complications with Tigress

• Changes needed for Tigress
• Generation of merged source

• Alteration of build process (cannot simply use existing Makefile)

• Some compiler compatibility issues
• Clang’s compatibility with Tigress’s custom CIL parser
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