
On the Learnability, Robustness, and
Adaptability of Deep Learning Models for

Obfuscation-applied Code

2025.08.21

Jiyong Uhm
jiyong423@g.skku.edu

Sungkyunkwan University
Suwon, South Korea

Yujeong Kwon
shr2008@g.skku.edu

Sungkyunkwan University
Suwon, South Korea

Hyungjoon Koo
kevin.koo@skku.edu

Sungkyunkwan University
Suwon, South Korea

mailto:jiyong423@g.skku.edu
mailto:shr2008@g.skku.edu
mailto:Kevin.koo@skku.edu

Deep Learning Models for Binary Analysis

• Numerous deep learning models for binary analysis!

2/20

Deep Learning Models for Binary Analysis

• Numerous deep learning models for binary analysis!

3/20

Binary obfuscation is common (e.g., malware)
How robust are DL models against obfuscation?

Overview

• Preliminary work

• Evaluating ML models against different obfuscation techniques
• Learnability

• Generalizability

• Robustness

• Adaptability

4/20

Public Obfuscation Tools

• IR-based
• Obfuscator-LLVM

• Source-based
• Tigress

5/20

6/20

Code Obfuscation Techniques

Bogus
Block

Opaque Predicate InsertionBenign Control Flow Flattening

DissimilarSimilar

Binary Code Similarity Detection Model

7/20

foo.c

foo.c

bar.c

foo.c

BinShot

• BinShot (Practical Binary Code Similarity Detection with BERT-based Transferable Similarity Learning; ACSAC ’22)

• BERT-based BCSD model

• MLM Training Task

• Two models are trained on different obfuscation tools
• Evaluate the transferability

8/20

Learning Semantics of Code?

9/20

push %rbp push %rbx push %rax

mov %rsi %rbx mov %edi %ebp

movl $0x0 0xc2 271e (%rip) cmpb

$0x0 0xc3 e37 (%rip) jne 434

008

push = {Embedding}

Learning Semantics of Obfuscated Code?

10/20

Overview

11/20

BinShot-O-LLVM
O-LLVM

Tigress

C

IR

Tigress

O-LLVM

C

Compilation

BinShot-Tigress

RQ1: Learnability

• How learnable is code obfuscation?
• Original BinShot model vs. Obfuscation-aware BinShot model

12/20

RQ1: Learnability Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy Precision Recall F1 AUC

BinShot BinShot-O-LLVM

13/20

Models can learn (to an extent) by training directly on obfuscated code.

RQ2: Generalizability

• Obfuscation-aware model’s performance
• Obfuscated vs. non-obfuscated

14/20

RQ2: Generalizability Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy Precision Recall F1 AUC

Dataset-Benign Dataset-Tigress

15/20

Achieving generalizability across both obfuscated and non-obfuscated code remains challenging

RQ3: Robustness

• Obfuscation-aware model’s performance
• Known obfuscation techniques (seen during training)

16/20

RQ3: Robustness Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy Precision Recall F1 AUC

O-LLVM-Substitution Tigress-EncodeArithmetic

17/20

Models trained on obfuscated code demonstrate good performance for known obfuscation techniques

RQ4: Adaptation

• Obfuscation-aware model’s performance
• Unknown obfuscation techniques (unseen during training)

18/20

RQ4: Adaptation Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy Precision Recall F1 AUC

O-LLVM-Substitution Tigress-EncodeArithmetic

19/20

Model’s ability to adapt to an unknown obfuscation technique depends varies depending on the
obfuscation techniques it has encountered

Limitations

• Alternate models
• How do other BCSD models react?

• How does obfuscation affect other downstream tasks?

• Alternate obfuscation techniques: future work
• Additional techniques in Tigress

• Sophisticated obfuscation techniques from commercial tools

20/20

Thank You!

• Any Questions?

• We release the experiment code
• https://github.com/SecAI-Lab/bcsd_obf_sure2025

21/20

https://github.com/SecAI-Lab/bcsd_obf_sure2025
https://github.com/SecAI-Lab/bcsd_obf_sure2025
https://github.com/SecAI-Lab/bcsd_obf_sure2025
https://github.com/SecAI-Lab/bcsd_obf_sure2025

Commercial Obfuscation Tools

22/20

Commercial Obfuscation Tools

• Why Not?
• Packed/Encrypted Executables

• Deep Learning Models require successful disassembly

• However (Future Work)
• Real World Application

• Sophisticated Obfuscation Techniques

• Dynamic Analysis

23/20

Complications with Tigress

• Changes needed for Tigress
• Generation of merged source

• Alteration of build process (cannot simply use existing Makefile)

• Some compiler compatibility issues
• Clang’s compatibility with Tigress’s custom CIL parser

24/20

	Slide 1: On the Learnability, Robustness, and Adaptability of Deep Learning Models for Obfuscation-applied Code
	Slide 2: Deep Learning Models for Binary Analysis
	Slide 3: Deep Learning Models for Binary Analysis
	Slide 4: Overview
	Slide 5: Public Obfuscation Tools
	Slide 6
	Slide 7: Binary Code Similarity Detection Model
	Slide 8: BinShot
	Slide 9: Learning Semantics of Code?
	Slide 10: Learning Semantics of Obfuscated Code?
	Slide 11: Overview
	Slide 12: RQ1: Learnability
	Slide 13: RQ1: Learnability Results
	Slide 14: RQ2: Generalizability
	Slide 15: RQ2: Generalizability Results
	Slide 16: RQ3: Robustness
	Slide 17: RQ3: Robustness Results
	Slide 18: RQ4: Adaptation
	Slide 19: RQ4: Adaptation Results
	Slide 20: Limitations
	Slide 21: Thank You!
	Slide 22: Commercial Obfuscation Tools
	Slide 23: Commercial Obfuscation Tools
	Slide 24: Complications with Tigress

