On the Learnability, Robustness, and
Adaptability of Deep Learning Models for
Obfuscation-applied Code

Jiyong Uhm Yujeong Kwon Hyungjoon Koo
jivong423@g.skku.edu shr2008@g.skku.edu kevin.koo@skku.edu
Sungkyunkwan University Sungkyunkwan University Sungkyunkwan University
Suwon, South Korea Suwon, South Korea Suwon, South Korea
AO\AKWANO@
6 G
$3’@ E,moff SecQiiab

2025.08.21

mailto:jiyong423@g.skku.edu
mailto:shr2008@g.skku.edu
mailto:Kevin.koo@skku.edu

|
Deep Learning Models for Binary Analysis

* Numerous deep learning models for binary analysis!

2/20

Deep Learning Models for Binary Analysis

* Numerous deep learning models for binary analysis!

Binary obfuscation is common (e.g., malware)
How robust are DL models against obfuscation?

3/20

Overview

* Preliminary work

* Evaluating ML models against different obfuscation techniques
* Learnability
* Generalizability
* Robustness
* Adaptability

4/20

Public Obfuscation Tools

e IR-based
e Obfuscator-LLVM

e Source-based
* Tigress

2015 IEEE/ACM 1st International Workshop on Software Protection

Obfuscator-LLVM — Software Protection
for the Masses

Pascal Junod*, Julien Rinaldini*, Johan Wehrli* and Julie Michielin’
*University of Applied Sciences and Arts Western Switzerland
HES-SO / HEIG-VD / IICT
Y verdon-les-Bains (Switzerland)

{pascal. junod, julien.rinaldini, johan.wehrli}@heig-vd.ch
TKudelski Security - Nagravision SA
Cheseaux-sur-Lausanne (Switzerland)
julie.michielin@nagra.com

Tigress Usage~ Platforms~ Users~ News~ Transformations~ About~ &5

the tigress c obfuscator

linux/darwin/android/windows, intel/arm/webassembly, 32/64, gcé/clang/emcc/cl

5/20

Code Obfuscation Techniques

——_—1

|
Bogus
Block

Benign Opaque Predicate Insertion Control Flow Flattening

6/20

Binary Code Similarity Detection Model

fooxﬂ

fooxﬂ

B

B

banc\

fooxﬂ

w

w

BinShot

¢ B N S h Ot (Practical Binary Code Similarity Detection with BERT-based Transferable Similarity Learning; ACSAC 22)

« BERT-based BCSD model
« MLM Training Task

« Two models are trained on different obfuscation tools
« Evaluate the transferability

8/20

Learning Semantics of Code?

0000000000433fcO® <main>:

433fcO: 55 %rbp

433fcl: 53 %rbx

433fc2: 50 %rax

433fc3: 48 89 f3 %rsi,%rbx

433fc6: 89 fd %edi,%ebp

433fc8: c7 05 1le 28 Oc 00 00 $0x0,0xc281le(%rip)
433fd2: 80 3d 37 3e Oc 00 00 $0x0,0xc3e37(%rip)
433fd9: 75 2d 434008 <main+0x48>

= {Embedding}

9/20

Learning Semantics of Obfuscated Code?

& Graph overview

.llllll.

Jjmp short $+2
] s =1
loc_9C2DC9:
mov eax, [rbp+var_24]
sub eax, BBl6AFCAeh
jz loc_9C30eD
¥
Wi E | (e =
Jjmp short $+2
loc_9C308eD:
mov eax, [rbp+var_8]
pop rbp
retn
s =
loc_9C2DD9:
mov eax, [rbp+var_24]
sub eax, ©B20C17A2h
jz loc_9C2FeD

i =1
jmp short $+2
i =
loc_9C2DB9:
mov eax, [rbp+var_24]
sub eax, OAAAEBS8Ch
jz loc_9C2E78
il s =
loc_9C2DE9:
mov eax, [rbp+var_24]
sub eax, ©OD@4BBECSh
jz loc_9C2EBB

10/20

Overview

BinShot-O-LLVM

Tigress

Tigress

BinShot-Tigress

11/20

RQ1: Learnability

e How learnable is code obfuscation?
* Original BinShot model vs. Obfuscation-aware BinShot model

12/20

RQ1: Learnability Results

1

0.
0.
0.
0.
0.
0.
0.
0.
0.1

Accuracy Precision Recall

N w M~ U1 OO N 0 O

o

B BinShot M BinShot-O-LLVM

[Models can learn (to an extent) by training directly on obfuscated code.]

13/20

RQ2: Generalizability

e Obfuscation-aware model’s performance
* Obfuscated vs. non-obfuscated

14/20

RQ2: Generalizability Results

0.
0.
0.
0.
0.
0.
0.
0.
0.1

Accuracy Precision Recall

N w M~ U1 OO N OO O =

o

W Dataset-Benign M Dataset-Tigress

[Achieving generalizability across both obfuscated and non-obfuscated code remains challenging]

15/20

RQ3: Robustness

e Obfuscation-aware model’s performance
* Known obfuscation techniques (seen during training)

16/20

RQ3: Robustness Results

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Accuracy Precision Recall

o

B O-LLVM-Substitution ~ M Tigress-EncodeArithmetic

Models trained on obfuscated code demonstrate good performance for known obfuscation techniques

17/20

RQ4: Adaptation

e Obfuscation-aware model’s performance
* Unknown obfuscation techniques (unseen during training)

18/20

RQ4: Adaptation Results

1
0.9
0.8
0.7

0.6

0.5

0.4

0.3

0.2

0 .
0

Accuracy Precision Recall

W O-LLVM-Substitution ~ M Tigress-EncodeArithmetic

Model’s ability to adapt to an unknown obfuscation technique depends varies depending on the
obfuscation techniques it has encountered

19/20

Limitations

e Alternate models
e How do other BCSD models react?
e How does obfuscation affect other downstream tasks?

* Alternate obfuscation techniques: future work
* Additional techniques in Tigress
» Sophisticated obfuscation techniques from commercial tools

20/20

Thank Youl

* Any Questions?

* We release the experiment code
 https://github.com/SecAl-Lab/bcsd obf sure2025

21/20

https://github.com/SecAI-Lab/bcsd_obf_sure2025
https://github.com/SecAI-Lab/bcsd_obf_sure2025
https://github.com/SecAI-Lab/bcsd_obf_sure2025
https://github.com/SecAI-Lab/bcsd_obf_sure2025

Commercial Obfuscation Tools

Advanced Windows software
protection system %, VMProtect Software oducts © News Support ~

Advanced m

L J
security made
ASPack is an advanced EXE packer created to compress Win32 executable files ani o
protect them against non-professional reverse engineering. Sim ple a nd

The solution makes Windows programs and libraries smaller up to 70% (the compre: relia ble
ratio is higher than the ZIP standard by 10-20%) what leads to a reduction in the dow

time of compressed applications in local networks and the Intemnet because of their

smaller size ECII'ﬂpEFEd to IJI'ICDTTID[ESSECI apps. Protect your software against cracking, analyzing and reverse-

AS Pa(j{ engineering. Make your work safe and secure.
The ASPack exe Compressor also [CIFO'I."iﬂES prr:rtectiorl to prr:ngramsfa Dp"CEltiDﬂS from

) : . il
unprofessional analysis, debuggers and decompilers. Programs compressed with As verview @
are self-contained and run exactly as before, with no runtime performance penalties.

22/20

Commercial Obfuscation Tools

* Why Not?
* Packed/Encrypted Executables
e Deep Learning Models require successful disassembly

 However (Future Work)
* Real World Application
* Sophisticated Obfuscation Techniques
* Dynamic Analysis

23/20

Complications with Tigress

* Changes needed for Tigress
* Generation of merged source
 Alteration of build process (cannot simply use existing Makefile)

* Some compiler compatibility issues
e Clang’s compatibility with Tigress’s custom CIL parser

24/20

	Slide 1: On the Learnability, Robustness, and Adaptability of Deep Learning Models for Obfuscation-applied Code
	Slide 2: Deep Learning Models for Binary Analysis
	Slide 3: Deep Learning Models for Binary Analysis
	Slide 4: Overview
	Slide 5: Public Obfuscation Tools
	Slide 6
	Slide 7: Binary Code Similarity Detection Model
	Slide 8: BinShot
	Slide 9: Learning Semantics of Code?
	Slide 10: Learning Semantics of Obfuscated Code?
	Slide 11: Overview
	Slide 12: RQ1: Learnability
	Slide 13: RQ1: Learnability Results
	Slide 14: RQ2: Generalizability
	Slide 15: RQ2: Generalizability Results
	Slide 16: RQ3: Robustness
	Slide 17: RQ3: Robustness Results
	Slide 18: RQ4: Adaptation
	Slide 19: RQ4: Adaptation Results
	Slide 20: Limitations
	Slide 21: Thank You!
	Slide 22: Commercial Obfuscation Tools
	Slide 23: Commercial Obfuscation Tools
	Slide 24: Complications with Tigress

