
Compiler-assisted Code Randomization

Hyungjoon Koo Yaohui Chen Long Lu
Vasileios P. Kemerlis Michalis Polychronakis

2

Introduction

Compiler-assisted Code Randomization

❖ The need for fine-grained code randomization

• Code reuse/ROP has been the de facto exploitation technique
after the introduction of W^X memory protections

• ASLR provides insufficient mitigation

✓ Defeated by information leaks

✓ Fixed relative distances between functions and basic blocks

• Code randomization makes gadget locations unpredictable

• The advanced JIT-ROP exploitation technique can bypass
fine-grained code randomization

✓ Recent execute-only memory (XOM) protections prevent JIT-ROP

✓ XOM relies on fine-grained code randomization to be effective

3

Motivation

Compiler-assisted Code Randomization

• Diversification by end users

✓ Source code level: recompilation

✓ Binary level: static/dynamic binary rewriting

✓ In both cases, the burden is placed on end users: responsible for
carrying out a complex and cumbersome process

• Diversification by software vendors

✓ Appstores could deliver a randomized variant to each user

✓ Increased cost for generating (compute power) and distributing
(no caching/CDNs) randomized copies

❖ Despite decades of research, code randomization
has not seen widespread adoption

4Compiler-assisted Code Randomization

❖ Key factors for making code randomization practical

Transparency Software distribution and installation should remain the same

CDN

Motivation: Key Factors (1/3)

5Compiler-assisted Code Randomization

Reliability

Software distribution and installation should remain the sameTransparency

Binary rewriting requires ultimate precision

• Correctness (e.g., indirect transfers)

• Incomplete code coverage

Static
Rewriting

• Performance degradation

• Compatibility issues
Dynamic
Rewriting

Motivation: Key Factors (2/3)

❖ Key factors for making code randomization practical

Binary rewriting requires ultimate precision

6Compiler-assisted Code Randomization

Compatibility

Reliability

Transparency

Randomized binaries should remain fully functional

Software
operations

Code
constructs

Crash reporting
Code signing

Patching
Updating

Shared object
Exception handling
Lazy binding
Full/partial RELRO

Compiler optimizations
Linking time optimizations
Position independent code
Control flow integrity

Motivation: Key Factors (3/3)

Software distribution and installation should remain the same

❖ Key factors for making code randomization practical

7

Prior Works (1/2)

Compiler-assisted Code Randomization

❖ Comparison

Research Needed Information

Efficient Techniques for Comprehensive
Protection (USENIX ‘05)

Source code

G-Free (ACSAC ‘10) Source code

ILR (Oakland ‘12) Disassembly

Orp: smashing gadgets (Oakland ‘12) Disassembly

Binary Stirring (CCS ‘12) Disassembly

XIFER: gadge me (CCS ‘13) Disassembly, Relocation

Oxymoron (USENIX ‘14) Disassembly

Readactor (Oakland ‘15) Source code

Shuffler (OSDI ’16) Symbol, Relocation

Selfrando (PETS ‘16)* Relocation, Function boundary

8

Prior Works (2/2)

Compiler-assisted Code Randomization

❖ SoK: Automated software diversity (Oakland ‘14)

“Naturally, the research in software diversity can

be extended; we point out several promising

directions. There is currently a lack of research on

hybrid approaches combining aspects of

compilation and binary rewriting to address

practical challenges of current techniques.”

9

Research Question

Compiler-assisted Code Randomization

❖ Can we achieve the following goal?

Reliably randomize binaries

in a transparent way,

compatible with existing software

10

Overview: Compiler-assisted Code Randomization

Compiler-assisted Code Randomization

❖ Compiler-rewriter cooperation

Source
Code 

IR

• Compiler (LLVM)

• Assembler

Object
Files

• Linker
(gold)

Master
Binary OBJ

FUN

BBL

Legacy Channel

Metadata

Rewriter

Software
Vendor

Randomized
Binary

Master

Binary

11

Transformation-assisting Metadata

Compiler-assisted Code Randomization

❖ Precise object boundaries for transformation

ELF Hdr

…

.plt

.text

(code)

.data

…

Sec Hdr

CRT

Obj#1

…

Obj#L

CRT

Fun#1

Fun#2

…

Fun#M

BBL#1

BBL#2

…

BBL#N

Executable

12

Transformation-assisting Metadata:
Code Generation in LLVM Backend (1/2)

Compiler-assisted Code Randomization

❖MC Framework uses an internal hierarchical structure:
Machine Function (MF), Machine Basic Block (MBB), Machine Instruction (MI)

Source
Code

• Compiler

• Assembler

Object
Files

• Linker

MF#1

MBB#1

MI#1

MI#2

MI#3

MBB#2

MI#4

MI#5

MI#6

MI#7

NOP

MBB#3

MI#8

NOP

MI#9

Branch Instructions

NOP Code

13Compiler-assisted Code Randomization

❖MCAssembler treats code as a series of fragments:
Data Fragment (DF), Relaxable Fragment (RF), Alignment Fragment (AF)

• No high-level structure (MF or MBB)

MF#1

MBB#1

MI#1

MI#2

MI#3

MBB#2

MI#4

MI#5

MI#6

MI#7

NOP

MBB#3

MI#8

NOP

MI#9

Source
Code

• Compiler

• Assembler

Object
Files

• Linker

MF#1_MBB#1

Label the parent
MBB/MF per each MI

Transformation-assisting Metadata:
Code Generation in LLVM Backend (2/2)

14Compiler-assisted Code Randomization

❖MCAssembler treats code as a series of fragments
• As layout is being determined, both MBB/MF sizes are decided.

DF

MF#1

MBB#1

MI#1

MI#2

MI#3

MBB#2

MI#4

MI#5

MI#6

MI#7

NOP

MBB#3

MI#8

NOP

MI#9

Source
Code

• Compiler

• Assembler

Object
Files

• Linker

Transformation-assisting Metadata:
Tracking Emitted Bytes in the Final Layout (1/3)

8B

0B

0B

8B

5B

3B

emitInstruction()

Fragment Types
- DF: Data
- RF: Relaxable
- AF: Alignment

RF

15Compiler-assisted Code Randomization

❖MCAssembler treats code as a series of fragments
• Branch instructions form relaxable fragments (RF).

DF

MF#1

MBB#1

MI#1

MI#2

MI#3

MBB#2

MI#4

MI#5

MI#6

MI#7

NOP

MBB#3

MI#8

NOP

MI#9

Source
Code

• Compiler

• Assembler

Object
Files

• Linker

Transformation-assisting Metadata:
Tracking Emitted Bytes in the Final Layout (2/3)

13B

0B

0B

13B

5B

Fragment Types
- DF: Data
- RF: Relaxable
- AF: Alignment

DF

RF

DF

DF

DF

RF

16Compiler-assisted Code Randomization

❖MCAssembler treats code as a series of fragments
• NOP byte(s) are counted as part of MBB or MF in size.

AF

AF

MF#1

MBB#1

MI#1

MI#2

MI#3

MBB#2

MI#4

MI#5

MI#6

MI#7

NOP

MBB#3

MI#8

NOP

MI#9

Source
Code

• Compiler

• Assembler

Object
Files

• Linker

Transformation-assisting Metadata:
Tracking Emitted Bytes in the Final Layout (3/3)

ELF Hdr

…

.text

…

Sec Hdr

.randMetadata

13B

20B

10B

43B

Fragment Types
- DF: Data
- RF: Relaxable
- AF: Alignment

17

Transformation-assisting Metadata:
Fixup Information (1/2)

Compiler-assisted Code Randomization

Byte Code Instructions Byte Code

48 89 DF

4C 89 F6

E8 49 43 00 00

EB 0D

49 39 1C 24

…

48 83 C4 08

mov rdi, rbx

mov rsi, r14

call someFunc

jmp short 0xD

cmp [mh],ctrl

…

add rsp, 8

48 89 DF

4C 89 F6

E8 8D 30 06 00

EB 0D

49 39 1C 24

…

48 83 C4 08

1

2

Object File Final Executable

TYPE VALUE

R_X86_64_PC32 someFunc-0x4

...

2

Relocation Table for Object File

• At compilation time MISSING
• At link time  relocations in object files
• At load time  relocations in final executable

❖ Fixup information can be resolved:

18

Transformation-assisting Metadata:
Fixup Information (2/2)

Compiler-assisted Code Randomization

• Set A = {Fixups resolved at compilation time}
• Set B = {Fixups resolved at link time}
• Set C = {Fixups resolved at load time}

✓ Offset from section base
✓ Dereferencing size
✓ Value is absolute or relative

A⊃ B⊃ C

❖ Fixup information relationships

19

Metadata Summary

Compiler-assisted Code Randomization

20

Metadata Consolidation at Link Time

Compiler-assisted Code Randomization

Object
Files

• Linker
(gold)

Binary
Executable

Metadata

• Constructing the final layout

• Resolving symbols

• Updating relocation information

• Merging/adjusting collected metadata from each object file

…

…

…

…

…

…

…

…

…

✓ Layout
✓ BBL size
✓ Fixup Offset

❖ Linker consolidates per-object metadata

21

Client-side Randomization (1/2)

Compiler-assisted Code Randomization

Variant

Master
Binary Rewriter

OBJ

FUN

BBL

(a) Parse raw data

(b) Build layout

Integrated

Metadata

OBJ_0 OBJ_1 OBJ_i

Binary

FUN_0 FUN_1 FUN_2 FUN_j

BBL_0 BBL_1 BBL_2 BBL_k

…

…

…

Fixup_0 Fixup_1 …Fixup_2 Fixup_x

❖ Binary rewriting at installation time

22

Client-side Randomization (2/2)

Compiler-assisted Code Randomization

❖ Binary rewriting at installation time

Variant

Master
Binary Rewriter

OBJ

FUN

BBL

Output

.text

.data

.rodata

.data.rel.ro

.init_array

(c) Perform rand.

(d) Rewrite binary

.rela.dyn

.dynsym

(.symtab)

.eh_frame

.eh_frame_hdr

Fixup Info

Rewriting

Symbol Info

Rewriting

Exception Handling

Info Rewriting

23

Evaluation (SPEC2006)

Compiler-assisted Code Randomization

❖ 0.28% runtime overhead on avg., 11.5% inc. in file size

24

What we have not talked about

Compiler-assisted Code Randomization

• How to handle jump table entries

• Support for various software constructs

✓ Exception handling

✓ Inline assembly

✓ LTO (Linking time optimization)

✓ CFI (Control flow integrity)

• Randomization constraints

• Optimized metadata serialization

• Implementation pitfalls and current limitations of CCR

❖ Challenges for enabling robust/practical transformation

25

Wrap-up

Compiler-assisted Code Randomization

❖ Compiler-assisted Code Randomization
• Function and basic block level permutation
• Facilitated by transformation-assisting metadata

stored within augmented executables
• Transparency, reliability, and compatibility
• Integration with Apt package manager

Open-source prototype:
https://github.com/kevinkoo001/CCR

26

Backup: Randomization Constraints

Compiler-assisted Code Randomization

FUN #0

BBL #0

BBL #1

FUN #1

BBL #2

FUN #2

BBL #3

BBL #4

BBL #5

1

a

b

c

FUN #1

BBL #2

FUN #2

BBL #4

BBL #3

BBL #5

FUN #0

BBL #0

BBL #1

2

a

b

c

FUN #1

BBL #2

FUN #2

BBL #4

BBL #3

BBL #5

3

FUN #0

BBL #0

BBL #1

a

b

c

27

Backup: Jump Table Entry and Metadata

Compiler-assisted Code Randomization

❖ Size of each entry and the # of entries in jump table

28

Backup: Exception Handling

Compiler-assisted Code Randomization

