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Abstract—A smart contract is a self-executing program on a
blockchain to ensure an immutable and transparent agreement
without the involvement of intermediaries. Despite its growing
popularity for many blockchain platforms like Ethereum, no
technical means is available even when a smart contract requires
to be protected from being copied. One promising direction to
claim a software ownership is software watermarking. However,
applying existing software watermarking techniques is challeng-
ing because of the unique properties of a smart contract, such as
a code size constraint, non-free execution cost, and no support
for dynamic allocation under a virtual machine environment.
This paper introduces a novel software watermarking scheme,
dubbed SMARTMARK, aiming to protect the ownership of a
smart contract against a pirate activity. SMARTMARK builds
the control flow graph of a target contract runtime bytecode,
and locates a collection of bytes that are randomly elected
for representing a watermark. We implement a full-fledged
prototype for Ethereum, applying SMARTMARK to 27,824 unique
smart contract bytecodes. Our empirical results demonstrate that
SMARTMARK can effectively embed a watermark into a smart
contract and verify its presence, meeting the requirements of
credibility and imperceptibility while incurring an acceptable
performance degradation. Besides, our security analysis shows
that SMARTMARK is resilient against viable watermarking cor-
ruption attacks; e.g., a large number of dummy opcodes are
needed to disable a watermark effectively, resulting in producing
an illegitimate smart contract clone that is not economical.

Index Terms—Smart contract, Software watermarking,
Blockchain, Software copyrights

I. INTRODUCTION

Due to the advancements in blockchain technologies,

blockchain-based smart contracts (hereinafter referred to as

smart contracts) have received significant attention from both

academia and industry over the last few years. A vast number

*Corresponding author.

of smart contracts have already been deployed on blockchains

(e.g., over 10 millions in 2020 on the Ethereum network [1]).

As a smart contract has been adopted for business, we

encounter a new (but familiar) challenge in protecting it

when a smart contract owner needs to claim one’s intellectual

property right. Since a smart contract is a type of programming

code, it is inherently prone to be plagiarized. Although a smart

contract is deployed in a binary form on a blockchain like

other software distributions, its size constraint (e.g., 24KB for

Ethereum) makes reverse engineering relatively less painful

with the state-of-the-art tools (e.g., Erays [2], Vandal [3],

Gigahorse [4]). Recent studies [5], [6] reveal that a vast

amount of contract code blocks had been indeed cloned. He

et al. [1] identified 41 decentralized applications (DApps1)

with 73 plagiarized DApps, which may cause a substantial

financial loss to the original DApp creators. Besides, they

showed that careless code reuse could bring unwanted results

from a security perspective.

A well-known technique for protecting a software copyright

is software watermarking, a process of embedding a watermark

W into a program P such that W can be further detected or

extracted to assert the ownership of P [7]. In essence, the

underlying mechanism is that W would be present when one

copies P even with the attempt of a corruption (e.g., modi-

fication). A plethora of software watermarking schemes [8],

[9], [10], [11], [7], [12], [13], [14], [15], [16], [17], [18], [19],

[20], [21], [22] have been introduced against a piracy.

However, applying the existing techniques to a smart con-

tract is not viable due to its unique properties. First, hiding

a watermark within a program would be difficult because

1A DApp is a collection of smart contracts incorporated with an interface
on a website or an application, to interact with users.
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the size of a smart contract is typically smaller than that

of a conventional program. Consequently, it is possible for a

skillful adversary to manipulate the watermark with static code

analysis. Second, a virtual machine such as Ethereum Virtual

Machine (EVM) offers a different enviornment from a bare

machine, making it infeasible to adopt prior approches like

the return-oriented programming (ROP)-based scheme [22] or

the function reodering scheme [11]. Third, running a bytecode

under EVM inevitably incurs a transaction cost, which restricts

any scheme that introduces additional code or data. Fourth,

EVM does not have a feature of dynamic memory allocation,

which disables the adoption of a prior scheme [23], [7] to

utilize that feature.
Only a few attempts have been made to protect smart con-

tract developers’ intellectual property rights. Zhang et al. [24]

present code obfuscation techniques for a smart contract,

especially written in Solidity [25], which makes it difficult to

decompile a smart contract. Yan et al. [26] propose a technique

to increase the difficulty level of recovering a control flow

graph from a smart contract bytecode by introducing four anti-

reverse engineering code patterns. Although it is possible to

raise the bar with the above techniques, they are still far from a

comprehensive solution for verifying the originality of a smart

contract (i.e., Has a contract been copied (partly or in full)

from another?).
In this work, we present SMARTMARK, to the best of our

knowledge, the first watermarking scheme on smart contracts

that considers both varying requirements of a watermark

(i.e., imperceptibility, spread, credibility, resiliency, capacity,

efficiency) and unique properties of smart contracts (i.e., gas

cost). At a high level, SMARTMARK builds a control flow

graph (CFG) from the runtime bytecode of a smart contract

and randomly elects a series of bytes from the blocks selected

across the CFG as a watermark.2 Next, SMARTMARK creates

a data structure that holds essential information (e.g., the

locations of elected bytes and the CFG generation method) to

extract the watermark later. SMARTMARK privately keeps this

data structure and only inserts the hash of the data structure

into the creation bytecode of the smart contract for further

verification of the watermark to claim the originality of the

smart contract. Note that we assume that SMARTMARK does

not add any extra code for watermarking to the runtime

bytecode of the smart contract, indicating that the smart

contract’s functional behavior would remain the same without

incurring additional gas costs to execute the smart contract.
The main benefits of our design choice are free from 1 an

undesirable gas cost for a transaction as the size of a runtime

bytecode stays intact, and 2 detection techniques based on

a static analysis as no additional code is introduced for a

watermark. To this end, we develop a full-fledged prototype of

SMARTMARK and demonstrate how our approach fulfills the

requirements of a watermarking scheme on smart contracts at

an acceptable cost. Moreover, we collected all the blockchain

2A runtime bytecode is the execution body of a smart contract, and a
creation bytecode consists of both a runtime and initialization bytecode (i.e.,
constructor).

blocks (about nine million blocks between 30 July 2015 and

21 June 2022) from the Ethereum Mainnet, and selected

27,824 unique bytecodes from those blocks to evaluate the

effectiveness and efficiency of SMARTMARK.

The contribution of our paper is summarized as follows.

• We present SMARTMARK, a novel software watermark-

ing scheme that satisfies varying requirements of water-

marking for smart contracts.

• We empirically evaluate SMARTMARK, demonstrating its

effectiveness and efficiency.

• We thoroughly study the resiliency of our watermarking

scheme against viable attacks.

II. BACKGROUND

This section describes the background of the Ethereum

smart contract and the virtual machine environment to run it.

A. Smart Contract and License

Smart Contract. The term “smart contract” [27] refers to

a piece of programming code that is permanently stored

and executed for processing transactions when predetermined

conditions are met. Smart contracts act as nodes or accounts on

the blockchain by leveraging its tamper-resiliency, traceability,

and transparency. Ethereum [28] is one of the most popular

and prominent blockchain-based smart contract platforms.

The smart contracts on Ethereum are written in a high-level

programming language such as Solidity. A Solidity code must

be compiled into Ethereum bytecode [28] to properly run

on a blockchain, remaining immutable and indelible within

a blockchain ledger. We design SMARTMARK by embedding

a watermark into bytecodes (compiled from a smart contract

written in Solidity at the Ethereum platform) and extracting it

from the bytecodes. Therefore, SMARTMARK is agnostic to

specific features of a high-level programming language.

License in Solidity. The Solidity compiler offers the means

of a machine-readable SPDX license identifier [29] by default,

which can be embedded into a bytecode as metadata (by

inserting a specific license header into every source file).

However, the license identifier differs from a digital watermark

because it merely represents one of the standard licenses (e.g.,

MIT, Apache, BSD, Creative Commons) rather than specifying

the actual ownership of a smart contract, being inappropriate

for claiming a smart contract copyright.

B. EVM and Bytecode

Ethereum Virtual Machine (EVM). The Ethereum Virtual

Machine (EVM) offers a stack-based runtime environment for

smart contracts, where a chunk of bytecodes can be executed

upon receiving a transaction. EVM maintains varying machine

states that hold a data structure as an execution component,

including accounts, balances, stack, memory, storage, and a

program counter. EVM supports 150 instructions [30] where

each comprises a single byte opcode (mnemonic) and zero or

more operands.

Gas Cost. Ethereum introduces the notion of the execution

fee, dubbed gas, for every EVM opcode (e.g., the opcode
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for multiplication consumes five units of gas) based on the

computational and storage overheads of each opcode [30]. This

enables miners to obtain a reward for computational resources

to store smart contracts and execute them. Besides, it can

prevent denial-of-service (DoS) attacks that invoke a time-

consuming function [31].

Bytecode for EVM. Solidity emits two types of bytecode:

1 creation bytecode (i.e., init bytecode) for initializing (i.e.,

constructor) and deploying a contract, and 2 runtime bytecode

(i.e., deployment bytecode) for executing the contract that is

stored on a blockchain. The major difference in spending a

cost is that a creation bytecode requires a gas once whereas a

runtime bytecode consumes a gas in every transaction. Note

that one can obtain runtime bytecodes on a blockchain and

creation bytecode from a contract transaction log.

III. SMART CONTRACT WATERMARKING

This section describes the need for a watermark technique

on smart contracts, challenges, varying requirements, and a

threat model with viable attacks.

A. Motivation and Challenges

Motivation. Due to the nature of public blockchain platforms,

even if the smart contract authors do not make source code

publicly available, smart contracts can be exposed in a byte-

code format and could be reused by anyone. Indeed, recent

empirical studies [5], [6] reveal that code reuse in smart

contracts is quite prevalent. For example, Chen et al. [6]

discovered that 26% of contract code blocks had been cloned

(14.6 occurrences on average) from the 146K open-sourced

projects, suggesting common patterns of code duplication in

smart contracts. Although the power of reusability helps a

smart-contracts-driven ecosystem to be rich, it may pose a

severe threat to managing smart contracts’ intellectual property

rights (IPR). He et al. [1] demonstrated that over 96% of 10

million contracts had duplicates. Besides, they reveal a case

that entails substantial financial losses (89,565.32 ETHs, about

30% of the original market); 73 plagiarized DApps are copied

from 41 original ones. Fomo3D is one of the popular DApps

with over 10,000 active users and large transactions (40,000

ETHs) back in 2018, which has been victimized by numerous

copycats. Such a growing concern motivates our work for

protecting the IPR of a smart contract. However, it is non-

trivial to prevent reusing existing smart contracts. A possible

solution would be to develop a software watermarking [7]

scheme to provide a technical means that claims the originality

of a smart contract on demand: e.g., plagiarized DApps could

have been disclosed with the scheme. Further, the presence

of explicit watermarks helps in establishing ownership proof

over legal disputes.

Challenges. Applying prior software watermarking techniques

to a smart contract is challenging due to the characteristics of

a smart contract programming language. One of the biggest

hurdles is that smart contracts typically have a small size

(up to 24KB), making it difficult to conceal a watermark

from the original smart contract code. Another challenge is

that running a bytecode under EVM comes with a (gas) cost

(i.e., Ethereum transaction fee), possibly leading to avoiding

any watermarking technique unless it stays the total cost

intact. Hence, it is evident that a watermarking scheme with a

charge would not be welcomed even with the presence of the

technique. Lastly, the EVM environment for a smart contract

does not allow for dynamically allocated memory, disabling

the adoption of existing watermarking schemes [23], [7] that

utilize dynamic allocation.

Goal. By nature, a blockchain is designed to confirm if a

certain smart contract appears for the first time. However, a

technical means is absent to verify that a suspicious smart

contract is a replica of an existing smart contract (thereby

violating IPR). In this paper, we aim to provide such a means

to address this problem. To the best of our knowledge, we

introduce the first watermarking scheme for smart contracts

that should be able to tackle the aforementioned challenges. To

demonstrate the effectiveness of SMARTMARK, our evaluation

focuses on answering the following research questions (RQs):

• RQ1: Is SMARTMARK able to protect smart contracts

from being copied effectively and efficiently?

• RQ2: Is SMARTMARK sufficiently resilient against a

variety of adversarial attacks?

B. Requirements

Instead of reinventing the wheel for the requirements of

a watermarking scheme, we adopt the general ones as with

previous software watermark approaches [11], [7], [32], [33],

[34], [35], [14]: imperceptibility, spread, credibility, resiliency,

capacity, and efficiency. Besides, we define a cost (gas con-

sumption) as another requirement for contract watermarking.

• Imperceptibility ensures that a watermark must be scarcely

perceptible, that is, a smart contract with an embedded

watermark must be indistinguishable from the one without.

• Spread denotes how well a watermark is distributed across

the whole smart contract code. Typically, a well-scattered

watermark tends to be resilient against corruption attempts.

• Credibility ensures that a watermark must be reliably veri-

fiable, minimizing false positive or negative cases.

• Resiliency represents the robustness of a watermarking

scheme against tampering attacks that aim to invalidate a

watermark, including addition, subtraction, and distortion.

• Capacity represents the data rate of a watermark that can be

encoded into a target contract. Considering a contract size

constraint, the length of a watermark cannot exceed it.

• Efficiency represents a performance overhead (i.e., computa-

tional resource) that is needed for watermarking operations.

We separately define a gas cost metric for smart contracts.

• Cost represents the amount of gas consumption for inserting

and validating a watermark. We utilize a gas price per

individual opcode as pre-defined in [30].

C. Threat Model

The objective of our watermarking scheme for a smart

contract is to thwart an adversary’s considerable efforts with
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Fig. 1. Overall SMARTMARK scheme for embedding and verifying a watermark for a smart contract. We carefully elect bytes ( 2 ) that comprises a watermark
from the CFG ( 1 ) of a runtime bytecode, creating a watermark reference object (WRO) ( 3 ). The original author secretly holds the WRO, and computes its
hash (WRO MAC). The WRO MAC is computed and embedded to a creation bytecode ( 4 , 5 ), followed by deploying it on the Ethereum network ( 6 ). By
verifying the extracted WRO MAC ( 7 , 8 ) from a creation bytecode with the extracted bytes from a reconstructed CFG ( 9 ), a watermark can be verified

( 10 ) on demand.

reasonable resources rather than suggesting an unbreakable

scheme (as a fully motivated attacker could hardly be pre-

vented). With this in mind, in this paper, we assume a strong

adversary who is capable of 1 obtaining an open bytecode

for a given smart contract, 2 understanding our watermark

scheme beforehand, and 3 performing arbitrary code manip-

ulation on a decompiled source code (Section VI-G) or byte-

code, attempting to tamper with a watermark. We also assume

that the adversary could collect as many smart contracts as

possible for further comparisons between them (i.e., collusive

attack).

Attack Types. We classify five viable attacks largely into

two categories: passive attacks (denoted as “P”), including

unauthorized recognition and collusion (against imperceptibil-

ity), and active attacks (denoted as “A”), including addition,

deletion, and distortion (against credibility and resiliency). Our

design principle does not necessarily conceal the presence

of a watermark embedded in smart contracts at all. Hence,

recognizing such information itself would not weaken the

overall security of SMARTMARK unless an adversary could

reveal the exact location of a watermark.

• (P) Unauthorized recognition refers to an attack that iden-

tifies the location of a watermark in a target smart contract.

• (P) Collusion refers to an attack that recognizes the location

of a watermark in a target contract by comparison.

• (A) Addition refers to an attack that embeds another water-

mark (i.e., adversary’s ownership) into a target contract.

• (A) Deletion refers to an attack that eliminates a valid

watermark from a target smart contract.

• (A) Distortion refers to an attack that encompasses every

transformation for damaging an existing watermark.

IV. SMARTMARK DESIGN

This section sketches the design of SMARTMARK that con-

siders both the requirements for generic watermarks and the

smart contract’s idiosyncratic properties. Notably, our scheme

does not introduce additional runtime bytecode because im-

planting bytes would be revealed by a sophisticated attack as

well as increasing an undesirable gas cost.

A. Design Overview

Fig. 1 depicts the overall process of SMARTMARK for

embedding and verifying a watermark for a smart contract.

First, the Solidity compiler generates both creation bytecodes

(i.e., contract constructor) and runtime bytecodes (i.e., actual

execution code under EVM). For embedding a watermark,

our scheme harnesses both creation and runtime bytecodes for

watermarking over smart contracts. We first construct a CFG

from a runtime bytecode ( 1 in Fig. 1), followed by electing

a series of bytes that incorporates a watermark ( 2 ). Then,

we explicitly define a structure (dubbed watermark reference

object; WRO) that contains essential information to represent

the watermark, which must be privately maintained by the

owner of a smart contract ( 3 ). We compute the hash value

of the WRO ( 4 ) and insert it into a creation bytecode ( 5 )

for further validating a watermark. For brevity, hereinafter, we

call such a hash value a WRO MAC that represents a message

authentication code for WRO. Once the creation bytecode is

complete, it is deployed to the Ethereum network ( 6 ). It is

worth noting that all bytecodes are publicly available in a

tamper-proof fashion after deployment, which indicates that

a WRO MAC is publicly accessible and immutable. To verify

the presence of a watermark in a target smart contract, a

verifier (e.g., the owner of the original smart contract) uses the

WRO containing the information about the watermark. For the

validity of the WRO, the verifier first computes the hash value

of the WRO and compares it with the WRO MAC extracted

from a creation bytecode of the target contract ( 7 , 8 ). If

the two values are matched, the WRO is valid. Therefore, the

verifier reconstructs a CFG from a target smart contract ( 9 ),

and confirms the presence of a watermark in the CFG with

the information in the WRO ( 10 ).

B. Watermark Embedding for Smart Contracts

This section portrays SMARTMARK’s watermark embed-

ding for smart contracts under the hood.

1) Design Choice: SMARTMARK carefully considers the

two types of bytecode with different properties; a runtime

bytecode for electing the bytes that form a watermark and

a creation bytecode for ensuring the integrity of a WRO.

SMARTMARK does not introduce any extra code within a

runtime bytecode since the execution of a smart contract

inevitably requires a gas cost. Alternatively, we store a 32-byte

WRO MAC as a variable in the creation bytecode because it

only incurs a one-time cost during deployment. Besides, we
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embed multiple (N ) watermarks, enabling a robust recovery

in case of partial damage (Section IV-C).

2) Strategic Byte Election: As illustrated in Fig. 1, we begin

with constructing a CFG from a runtime bytecode. However,

not every byte accounts for a watermark in SMARTMARK

because strategic insertion of a (cheap) dummy byte into every

block within a target CFG can disturb watermark construction.

Therefore, we carry out two processes; choosing a set of

candidate bytes that contribute to forming a watermark, and

randomly electing watermark bytes from the candidates.

Watermarkable Zone. We determine a code region that

embraces a set of candidate bytes for a watermark, that

is, a watermarkable zone by excluding bytes unsuitable for

watermarking. First, we rule out a byte if it falls into a

dispatcher function3 because it is commonly used for all smart

contracts. Second, we exclude all operands since they can

be more fragile to a watermark corruption (e.g., modifying

jumping destinations, immediate values on the stack).

Opcode Group. From a collection of all bytes (i.e., list

of opcodes) in the above watermarkable zone, we group a

sequence of opcodes together by taking gas consumption into

consideration. An opcode group can be determined with three

factors; 1 a cost threshold (T ) that represents the aggregate

of gas costs for consecutive opcodes, 2 the size of a sliding

window (W ), and 3 the maximum size of a group (G) or

the number of opcodes. To exemplify, in Fig. 2, the first

four consecutive bytes (e.g., 0x5B, 0x82, 0x01, 0x91) at

the first block table ( 1 ) can form a group because the gas

sum (1+3+3+3=10) exceeds T = 9 in case of G = 5 and

W = 1. In the same vein, the next five consecutive bytes

(e.g., 0x5B, 0x82, 0x01, 0x91, 0x90) can hold another

group as it meets the requirements of the gas sum of 13 when

the group size is 5. Next, we move forward (e.g., starting from

0x82) to seek the next group candidates until all blocks are

covered. The reasoning behind this process is that we desire to

generate as many opcode group candidates (to choose from)

as possible while avoiding a fully overlapped group under

the distribution of opcode costs (3 as a mean value)4, the

number of blocks per smart contract (108.8 on average), and

the number of opcode per block (21.7 on average).

Watermark Byte Election. Concisely, once every opcode

group in a watermarkable zone is set up, we randomly subset

all opcode groups, followed by electing bytes for a watermark.

First, we randomly choose R% of all opcode groups. The

elected groups may be partially overlapped or consecutive,

forming a byte stream per block. Notably, the byte stream

serves a basis for further watermark verification. Second, we

elect L bytes at random so that each byte can be present in a

different block for a better spread where L is the number of

distinguishing bytes that a watermark demands. As a concrete

3The dispatcher is a built-in function that points to user-defined (public)
functions, which should be invoked at the beginning of runtime bytecode (e.g.,
the start function in Fig. 2).

4The most frequently appeared opcode is PUSH1 in our dataset, whose cost
is three. Note that more than three out of four opcodes (76.2%; 98,137,334
of 128,819,501) consume a gas cost of three.

example, Fig. 2 illustrates the whole process of byte election

with the ERC20 smart contract [36]. In this example, we show

three watermark bytes (e.g., 0x52, 0x15, 0x06) that are

elected across eight opcode groups from three blocks (e.g.,

2, 3 and 3 per block) in case of L = 5. We adopt a unit of

nibble (4 bits) to increase the likelihood of having the number

of unique bytes from the byte stream (one may want to use

more fine-grained unit like a bit). As an example, the second

watermark byte of 0x15 in Fig. 2 has been taken from the

second nibble at 0x81 and the first nibble at 0x54 (red letters).

Finally, a nibble offset is required within a block for every

elected watermark byte. Then we bookkeep the information

of a watermark including opcode groups, block hashes, and

nibble offsets in a pre-defined structure (Figure 3).

3) Watermark Reference Object (WRO): We define a struc-

ture, dubbed WRO, which records crucial information to val-

idate a smart contract watermark, including block identifiers,

nibble offsets within each block, opcode groups, the length

of a watermark as well as the watermark itself. Note that a

block identifier is a hash value of a byte stream (i.e., subset

of all opcodes), not of an entire block. Similarly, an offset

represents a distance within a byte stream for better resiliency.

Fig. 3 shows the structure of the object in detail. Additionally,

it contains a CFG generation tool identifier5, a block hash

algorithm (each block takes the first four bytes of the byte

stream’s hash for identification), the number of a watermark

(multiple watermarks are embedded for robustness against

partial corruptions), and a contract address. As presented in

Section IV-B, we compute the hash of the WRO (i.e., WRO

MAC), and store it to a variable in a constructor (Listing 1).

1 contract Watermark {
2 bytes WRO_MAC;
3 constructor() {
4 // WRO MAC with Keccak-256
5 WRO_MAC = "cc860417...fc6b";
6 }
7 }

Listing 1. Example of inserting a WRO MAC in Solidity. A constructor holds
a variable for the MAC that resides in a creation bytecode after deployment.

C. Watermark Verification

A watermark verification entails three main phases as fol-

low. First, given a WRO, we can compute the hash of the

WRO and compare it with the stored WRO MAC extracted

from the creation bytecode to ensure the integrity of the

WRO. Second, given a target runtime bytecode, watermark

verification reconstructs a CFG with the same CFG gener-

ator during an embedding process, followed by creating a

byte stream (per block) with a list of opcode groups in the

WRO. The way to seek a certain byte stream in a CFG is

through a series of byte-level searches at every target block.

Third, a verifier can compute every block hash with that

byte stream, and find watermark bytes from each block with

5SMARTMARK predominantly relies on deterministic CFG construction
from a CFG generator (e.g., EtherSolve), regardless of its correctness. Hence,
verifying the presence of a watermark should be feasible as long as extracting
the identical CFG from a certain contract. In this regard, a WRO contains a
CFG tool identifier, including a specific version.
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Dispatcher

Exit

Fig. 2. Example of strategic byte election with the ERC20 runtime bytecode for a five-byte watermark. Once CFG construction is completed, we randomly
elect a series of opcode groups (i.e., vertical lines in the block tables) from a watermarkble zone (Section IV-B), forming a final watermarkable byte stream.
This example illustrates five blocks (i.e., dotted blocks; 1 - 5 ) where three of them demonstrate how each byte of the watermark values (on the top right
table) has been distributed (e.g., red nibbles) across separate blocks. The table on the bottom shows a block hash and a nibble offset in each byte stream for
a block (value corresponding to the watermark), being recorded in a WRO.

Fig. 3. Structure of a WRO. The grey fields represent fixed-length values
while others are not.

nibble offset information. The verifier can successfully recover

a watermark unless an adversary corrupts one of the byte

streams contributing to the watermark. Note that multiple

watermarks are inserted to enhance SMARTMARK’s resilience

against corruptions.

V. IMPLEMENTATION

Our SMARTMARK prototype is written in Python 3.9. We

leverage EtherSolve [37] into disassembling a smart contract

bytecode and generating a CFG. If the CFG holds multiple

blocks having the same bytecode, we consider only one block

so that all blocks are uniquely different for SMARTMARK.

Hash Algorithm. The case that SMARTMARK employs a hash

algorithm is twofold (Section IV-B): one for generating the

hashes of all blocks in a CFG, and one for creating a WRO

MAC. In both cases, we utilize the Keccak-256 hash algorithm

whose output is a fixed length of 256 bits. Note that we take

the first four bytes of a Keccak-256 digest to represent a block

hash, which is equivalent to generating an identifier for a

user-defined function when compiling a smart contract into

bytecode in EVM.

Hyperparameters. We deliberately leave a handful of hyper-

parameters to be able to be adjusted (Section IV-B) in need for

SMARTMARK. For determining opcode groups, we introduce

a gas threshold (T ) with the size of a sliding window (W )

and that of an opcode group (G), which assists in electing

bytes to meet the requirements (Section III-B). The ratio of

elected opcode groups is set to R%, which forms a byte stream

per block. The length of a watermark is set to L bytes,

and the current SMARTMARK implementation elects L blocks

accordingly (i.e., electing a single byte per block). Lastly, the

number of embedded watermarks (N ) is for robust verification

where multiple watermarks may hold different values. It is

possible to insert a different length for each watermark, how-

ever, we use the same lengths for a straightforward security

analysis. The following enumerates concrete hyperparameters

in our experiment for SMARTMARK: T = 9, W = 1, G = 5,

R = 0.2, N = {1, 3, 5, 7}, and L = {10, 20}. In general, care
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must be taken in setting parameters as follows: 1 N and L
rely on the number of blocks in a smart contract, 2 R strikes a

balance between the probability of successful attacks (e.g., too

high R may increase a distortion attack with a higher chance

of choosing precise opcode groups) and the number of opcode

group candidates available (e.g., too low R may fail to have

sufficient candidates), and 3 we empirically advise T = 9
and G = 5 for both effectiveness and efficiency.

VI. EVALUATION

In this section, we present how well SMARTMARK meets

the requirements of a smart contract watermark (Section III-B

with RQ1), and analyze its robustness from a security perspec-

tive (Section III-C with RQ2). We evaluate SMARTMARK on

a 64-bit Ubuntu 18.04 system equipped with Intel(R) Xeon(R)

Gold 6230 2.10 GHz and 567GB RAM.

Dataset. We collected all fifteen million blocks (mined during

the period 30 July 2015 to 21 June 2022) from the Ethereum

Mainnet, which incorporates 4, 112, 336 smart contracts. Then,

we obtain 445, 930 unique runtime bytecodes (10.8% of

the whole) after eliminating all byte-level equivalent ones.

We leverage EtherSolve [37] to obtain CFGs for 284, 344
contracts, followed by taking 178, 119 contracts (62.6%) that

contain a unique watermarkable zone (recall that operands and

dispatcher blocks are excluded for our scheme). We indeed

observe a high ratio of code duplication in smart contracts,

aligned with the previous findings [6]. We manually confirm

that a considerable number of code reuse cases arise from

the standards [38] introduced by the Ethereum community

such as ERC-20 (standard interface for fungible tokens)

and ERC-721 (standard interface for non-fungible tokens).

In this respect, we group analogous contracts together to

demonstrate the effectiveness of our watermarking scheme. We

perform DBSCAN clustering [39] with the similarity metric of

max( len(a∩b)
len(a) , len(a∩b)

len(b) ) where a and b denote the CFG blocks

for the two contracts, A and B. This is because SMARTMARK

mainly targets disparate bytecodes (i.e., program logic), ex-

cluding a common component like ERC20 that causes an

overlapping between contracts. We finally obtain 27, 824 smart

contracts out of 178K (15.6%) distinguishing sample contracts

for our experiment. The average size of the smart contracts in

our dataset is 5.8KB with the standard deviation of 4.6KB
(median: 4.5 KB).

A. Imperceptibility

In SMARTMARK, a watermark is completely imperceptible

as long as its WRO is privately kept by the smart con-

tract owner. To embed a watermark into a smart contract,

SMARTMARK does not add any additional code and data

except a WRO MAC on its creation bytecode; the watermark

is constructed with watermark bytes randomly elected from

its runtime bytecode, resulting in that watermark bytes are

indistinguishable from the other bytes in the runtime bytecode.

Perhaps, a sophisticated adversary can identify the WRO

MAC from the creation bytecode. However, we note that a

WRO MAC is a cryptographic hash value that is irreversible.

TABLE I
BREAKDOWN OF EMBEDDING AND VERIFICATION TIME ON AVERAGE.
ELECTING BYTES FOR A WATERMARK AND CREATING A BYTESTREAM

DOMINATE EMBEDDING AND VERIFICATION TIME, RESPECTIVELY.

Process Phase Ratio (%) Time (ms)

Embedding
Opcode grouping 3.38 363.88± 410.62
Watermark byte election 96.69 10, 720.59± 13, 083.91
WRO creation 0.03 3.38± 2.49

Verification
WRO verification 0.01 0.71± 0.70
Bytestream creation 70.06 12, 089.79± 14, 421.60
Hash discovery 29.93 5, 165.84± 5, 097.88

Therefore, one cannot obtain fruitful information about WRO

from the WRO MAC.

B. Spread

Going back to Fig. 2, SMARTMARK intentionally picks

a single byte from a byte stream per block, resulting in a

well-scattered watermark across different blocks in a CFG.

In this example, five out of 13 blocks (around 38%) are

covered for a watermark, and a lengthier one would be more

dispersed. Besides, by design, SMARTMARK allows one to

insert multiple watermarks so that it could increase verifiability

even with a single watermark being survived. Such a design

choice makes SMARTMARK robust against varying attacks by

lowering the possibility of damaging every watermark simul-

taneously. Oftentimes, it would be excessively costly for an

adversary to disrupt a well-distributed watermark, hampering

further transactions (Section VI-G).

C. Capacity

In practice, the total length (i.e., capacity) of a watermark

(or multiple watermarks) is bounded by the number of blocks

in a CFG because our scheme relies on how to choose opcode

groups in a watermarkable zone. In our experimental setting,

we elect one byte from a single block. In general, the capacity

of our watermarking scheme is determined by the number of

watermarkable blocks available in a smart contract, rather than

the size of the contract.

D. Efficiency

To demonstrate the efficiency of SMARTMARK, we run

experiments of embedding and verification processes 10 times

to measure CPU time. Note that we exclude any smart contract

that does not conform to the code size limit (i.e., EIP-170 [40])

in our experiments. Furthermore, we measure sub-phases

for watermarking operations (Table I); the phase of electing

watermark bytes dominates the entire embedding time (96.7%)

whereas that of creating (watermarkable) bytestream does the

verification time (70.1%). A wide range of variations mainly

arise from processing time that largely depends on the number

of blocks pertaining to a watermark, rather than the size of a

smart contract. We observe that a verification process (mean:

17, 258 milliseconds) takes approximately 1.5 times longer

than an embedding process (mean: 11, 088 milliseconds), but

is still overall acceptable in practice (e.g., within 20 seconds).
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TABLE II
RATIO OF UNIQUE WATERMARKS BY THE WHOLE SIZE (L×N ) OF AN

EMBEDDED WATERMARK. L AND N DENOTE THE LENGTH OF A

WATERMARK (L) AND THE NUMBER (N ) OF WATERMARKS,
RESPECTIVELY. A WATERMARKABLE CONTRACT REPRESENTS THE

CONTRACT THAT INCORPORATES A SUFFICIENT NUMBER OF

WATERMARKABLE ZONES.

L N
Watermark # Unique Watermarks

Ratio
Size (bytes) (Watermarkable Contracts)

10

1 10 27,704 (27,823) 99.995%
3 30 23,062 (23,378) 99.986%
5 50 18,098 (18,511) 99.978%
7 70 15,140 (15,620) 99.970%

15

1 15 27,764 (27,764) 100.000%
3 45 19,482 (19,485) 99.999%
5 75 15,144 (15,156) 99.999%
7 105 13,009 (13,030) 99.998%

20

1 20 26,679 (26,679) 100.000%
3 60 16,874 (16,874) 100.000%
5 100 13,311 (13,311) 100.000%
7 140 11,646 (11,646) 100.000%

E. Cost

Recall that SMARTMARK does not introduce any additional

routine on a runtime bytecode, staying the original execution

gas intact. Instead, SMARTMARK increases a (one-time) cre-

ation cost due to a WRO MAC in a constructor (Listing 1 in

Section IV-B) where its cost is closely proportional to the size

of the WRO MAC. In case of embedding a 256-bit WRO MAC

using Keccak-256 in our implementation, an additional cost

ranges from 48,540 to 53,100 gas. Such cost variation mostly

arises from varying opcodes depending on the original context

of the constructor when inserting a WRO MAC. Although a

gas price frequently fluctuates, as of writing, the additional

gas consumption is around 4.27 ∼ 4.67 US dollars (USD)

with the exchange rate of 90 ∼ 100 gas per bit.

F. Credibility

Credibility is one of the essential requirements for a wa-

termarking scheme, which ensures that it can be reliably

extracted for proof of ownership. We assess SMARTMARK

by confirming that a watermark from WRO must be unique,

that is, the watermark cannot be present elsewhere but the

original contract. Table II summarizes the total bytes of the

watermark(s) (L×N ) with the length (L) and the number (N )

of the watermark(s) inserted into a smart contract, and the ratio

of contracts that hold unique watermarks accordingly. Due to

the constraint of an embedding watermark size that relies on a

smart contract size, we compute the ratio of uniqueness based

on the number of watermarkable contracts where a certain

size (i.e., L × N bytes) of a watermark can be embedded.

For example, a single 10-byte long watermark can possibly

be inserted into 27, 823 (99.999%) out of 27, 824 contracts

in total, resulting in 27, 704 contracts holding unique values

(99.995%). Empirically, the uniqueness ratio is proportional

to the length of a watermark whereas inversely proportional

to the number of the watermark. Hence, we advise striking a

balance between the length and the number for fulfilling both

capacity and spread properties (as well as credibility).

G. Resiliency

In this section, we show how SMARTMARK can defend

against the attacks presented in Section III-C. Note that

Section VI-A covers unauthorized recognition.

1) Collusion: A collusive attack would help identify a

smart contract’s WRO MAC by analyzing the differences

between the creation bytecodes of several smart contracts

because all WRO MAC values always have the same fixed

length, e.g., SHA-256 produces a 32 bytes hash value, and

have a higher entropy than the other variable values. As

mentioned in Section VI-A, however, we note that the presence

of a WRO MAC itself does not practically help recognize

its corresponding watermark because a WRO MAC is a

cryptographic hash value that is irreversible.

2) Addition: We note that an adversary can embed a

watermark Wa of one’s choice into a smart contract using

SMARTMARK in the same manner even when a watermark Wo

is already present in a smart contract. In such a case, one can

verify the presence of both watermarks (Wa and Wo) with the

original smart contract owner’s own WRO and the adversary’s

own WRO, respectively. However, it is easily recognizable

that Wo was embedded prior to Wa because transactions are

permanently recorded on the Ethereum blockchain network in

chronological order; checking if the WRO MAC of an early-

deployed watermark will do.

3) Deletion: With our scheme, a watermark is constructed

with existing opcodes in an original smart contract. In theory, a

watermark deletion may be possible when an adversary could

replace one or more opcodes used for the watermark with

others, however, such semantic-preserving code transformation

that maintains a reasonable cost would be quite challenging.

4) Distortion: One of plausible and powerful attacks to

corrupt our watermark scheme is a distortion attack with

arbitrary transformations. We randomly choose 2,500 smart

contracts whose source code have been publicly available. In

this experiment, we set the length of a watermark (L) to be

15, and the number of watermarks (N ) to be 3.

Empirical Results. We conduct various distortion experiments

for thwarting an embedded watermark with the following five

different types of transformations as suggested by Chen et

al. [6]: 1 adjusting a function visibility (e.g., access modifier

alters public to private, or the other way around), 2 up-

dating an inheritance relationship (e.g., arbitrary subcontract

is added and inherited), 3 introducing an additional state

variable (e.g., original state variable refers to an arbitrary

state variable), 4 defining a new event and function (e.g.,

additional function has been added to an original contract),

and 5 adding a statement (e.g., arbitrary statement is added

to an original function). Table III summarizes the results of the

above distortion attempts against our scheme. SMARTMARK

shows the robustness of an individual attack (i.e., 99% or

above), and applying all transformations barely drops the ratio

of appropriate verification (i.e., 98.9%).

Theoretical Analysis. As presented in Section VI-A, an

adversary cannot distinguish watermark bytes from other bytes
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TABLE III
EXPERIMENTAL RESULTS OF VARYING DISTORTION ATTACKS AGAINST AN

EMBEDDED WATERMARK ON 2,500 SMART CONTRACTS, WHICH SHOWS

THE ROBUSTNESS OF THE SMARTMARK SCHEME.

Transformation Type (Distortion) # Verified Contracts Ratio

1 Adjusting a function visibility 2,490 99.60%
2 Updating an inheritance 2,495 99.80%
3 Introducing an additional state variable 2,489 99.56%
4 Defining an event & function 2,500 100.00%
5 Adding a statement 2,475 99.00%
+ Applying all the above 2,472 98.88%

in a smart contract. Therefore, for each block in the CFG of a

target contract containing a watermark byte, the best distortion

strategy at the bytecode level would be guessing an opcode

group used for the watermark and adding it to the block. If

the adversary’s guess is correct, the newly added opcode group

would be used to form a watermarkable byte stream with the

existing opcode groups for the watermark to compute the CFG

block hash. Consequently, the valid block hash contained in

the WRO would not match the new block hash, leading a

watermark corruption.

Given a smart contract of s, the probability of an attack

success (Pattack (L,Bs,Ms)) with a distortion can be com-

puted by Equation (1) where L, Bs, and Ms represent the

length of the watermark, the number of candidate blocks (in

a watermarkable zone) for s, and the number of candidate

blocks (in a watermarkable zone) that has been modified by an

adversary against s, respectively. Figure 4 concisely illustrates

those parameters. Watermark bytes are scattered in candidate

blocks in a watermarkable zone. Suppose that an adversary

was able to modify the block(s) of one’s choice where some

of which could contain a watermark byte.

Pattack(L,Bs,Ms) =

∑min(L,Ms)
i=1

(
Bs

Ms

)(
Ms

i

)(
Bs−Ms

L−i

)
(
Bs

L

)(
Bs

Ms

) (1)

In Equation (1), the denominator represents the number of

all possible ways by choosing 1 L blocks from Bs blocks

disallowing duplicates, and 2 Ms blocks from Bs blocks

disallowing duplicates, respectively. The numerator represents

the number of successful distortion attacks. When an adversary

modifies Ms blocks from Bs blocks, the distortion attack

would be successfully performed if those modified blocks

contain at least one block that contains watermark bytes. In

Equation (1), i represents the number of blocks that contains

actual watermark bytes out of Ms blocks modified by an

adversary. In this scenario, the number of successful distortion

attacks can be interpreted as the number of possible ways to

choose Ms blocks from Bs blocks, i blocks from those Ms

blocks, and L− i blocks from the remaining Bs −Ms blocks

disallowing duplicates. Finally,
(
Bs

Ms

)
can be canceled out in

the numerator and the denominator.

To enhance the resiliency of SMARTMARK against distor-

tion attacks, we can insert N watermarks that do not overlap

each other where N > 1. In this case, an adversary needs to

Watermark bytes (L)

Modified by an adversary (Ms)

Blocks in a watermarkable zone (Bs)

Fig. 4. Illustrative parameters to compute the probability of an attack success,
Pattack(L,Bs,Ms). An empty rectangle represents a candidate block in a
watermarkable zone, where the rectangle with a dark box contains a watermark
byte. The dotted circle represents an area that includes the candidate block(s)
modified by an adversary.

corrupt all N watermarks for a successful attack. We presume

that all watermarks have the same length for simplicity of

analysis. With the notation of Pattack(L,Bs,Ms, N), the

probability of an attack success with N watermarks on a smart

contract s. Pattack(L,Bs,Ms, N) can be simply expanded

from Pattack(L,Bs,Ms) as in Equation (2).

Pattack(L,Bs,Ms, N) = Pattack(L,Bs,Ms)
N (2)

We compute Pattack(L,Bs,Ms, N) for each smart con-

tract in the 27,824 smart contracts with varying parameters

such as L, N , and α where α represents the ratio of the

maximum allowable gas cost for the opcodes added by an

adversary (hereafter referred to as “attack budget”) to the

total gas cost to execute a target smart contract. To compute

Pattack(L,Bs,Ms, N), we need to concretely obtain Bs and

Ms from the smart contract s. With the hyperparameters of

T = 9, W = 1, G = 5, and R = 0.2, as watermarkable blocks

for s are determined by our SMARTMARK implementation, we

can empirically obtain Bs. However, Ms cannot be determined

by SMARTMARK because Ms depends on an adversary’s

choice – an adversary needs to correctly guess an opcode

group for a candidate block containing watermark bytes and

add it to the block. Therefore, given a smart contract s, we

compute the expected value of Ms (E(Ms)) with specific

parameter values for s. The attack budget can be computed

as α ·Ψs where Ψs represents the total gas cost to execute the

smart contract s. For example, when Ψs = 1, 000 and α = 0.5,

the attack budget would be 500. In other words, 50% of the

gas cost (α = 0.5) is more needed to run a clone DApp.

From the attack budget α ·Ψs, we can compute the maximum

number of opcode groups added to s for a distortion attack as

�α ·Ψs/T � because the gas cost for each opcode group, which

corrupts a watermark byte effectively, is greater than or equal

to T . In the previous example, when T = 9, the maximum

number of opcode groups added to s is 55. We assume that an

adversary knows T used for SMARTMARK for simplicity of

analysis. Then, the adversary’s best attack strategy is to select

�α ·Ψs/T � blocks out of Cs blocks and add an opcode group

to each block one by one where Cs represents the number

of the blocks that contains opcode groups, which requires a
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(a) α = 0.2 with L = 10 (left) and L = 20 (right)

(b) α = 0.3 with L = 10 (left) and L = 20 (right)

Fig. 5. Cumulative distribution functions (CDFs) of Pattack(L,B,M,N)
with L = {10, 20} and N = {1, 3, 5, 7} for 2,738 smart contracts.

gas cost greater than or equal to T . With this strategy, the

probability of selecting a candidate block in a watermarkable

zone is Bs/Cs whenever an adversary modifies a block. Thus,

E(Ms) can be computed by multiplying �α·Ψs/T � by Bs/Cs

as follow:

E(Ms) =

⌊
α ·Ψs

T

⌋
·
Bs

Cs

(3)

Figure 5 shows the cumulative distribution functions (CDFs)

when computing Pattack(L,B,M,N) with α = {0.2, 0.3}, L
= {10, 20}, and N = {1, 3, 5, 7} with the selected 11,646

smart contracts for fair comparison (recall that the number

of watermarkable contracts may be different depending on

L and N ). Overall, choosing either a smaller L or a larger

N raises the bar by requiring a higher execution cost for

successful attacks, confirming our intuition on the resiliency of

SMARTMARK against distortion attacks. With L = 10, N = 7,

and α = 0.2, only 0.7% of the smart contracts would be

thwarted with the attack success probability of 0.05 or higher.

Even when α increases 0.3 with the same configuration, only

8.9% would be thwarted, being still effective. On the contrary,

with L = 20, N = 7, and α = 0.2, the attack success

probability significantly increases; 25.3% would be thwarted

with the attack success probability of 0.05 or higher. Based

on these results, we advise not to utilize L = 20 despite its

superiority in credibility (Section VI-F). Likewise, a single wa-

termark (when N = 1) would be ineffective against distortion

attacks, indicating that multiple watermarks are recommended

for SMARTMARK. It is noted that an adversary cannot increase

α unreasonably because generated smart contracts with a

large α are not competitive at all against the original smart

contract in terms of execution cost. In a competitive DApp

market, it is typical that a user avoids choosing a DApp that

consumes an additional gas cost if there is an alternative to

provide same/similar features. Likewise, Ethereum users are

no difference [41].

VII. DISCUSSIONS AND LIMITATIONS

This section covers in-depth discussions and limitations of

our approach, and future research.

Reversing EVM Bytecode. EVM is a Turing complete virtual

machine based on the stack, which does not follow the Von

Neumann architecture (e.g., no registers). Besides, Solidity

even complicates bytecodes by introducing built-in functions

and applying various optimizations. In this regard, reverse en-

gineering of an EVM bytecode and understanding underlying

semantics (i.e., decompilation) are non-trivial [42], [43], [44].

This would make distortion attacks without source code quite

challenging on a smart contract.

EVM Bytecode Diversification. Having the identical source

code, a runtime EVM bytecode may be diversified with the

rapid evolution of the Solidity compiler [45]. However, the

current design of SMARTMARK targets bytecode generation

with the same compiler version. We conduct an additional

experiment to confirm the robustness of SMARTMARK against

different compiler versions (from 0.4.0 to 0.8.17). Our empiri-

cal results demonstrate 1 successful watermark detection with

a minor version difference; of the total 5,028 contracts, only

6% was undetected (L=15, N=3), and 2 cross-compilation

failure with a different major version mostly due to unsup-

ported syntaxes; SMARTMARK may be extended to support

multiple compiler versions by creating an individual WRO per

version, which we leave part of our future work. As a final

note, recall that WROs are added to off-chain storage (rather

than in a smart contract itself) without incurring an additional

gas cost.

Threats to Validity. The threats to the validity of this work

mainly come from two aspects. A possible threat is whether we

used representative smart contracts for evaluation. Even though

we collected 4,112,336 smart contracts from all Ethereum

blocks, our experiments include only 27,824 smart contracts

based on the DBSCAN clustering results for distinct smart

contracts. Before clustering, we exclude 7,422 (4.17%) small-

sized smart contracts because those contracts do not have a

sufficient number of CFG blocks for embedding watermarks.

However, it would not be problematic with considerably com-

plex business logic in most cases, which increases the size (and

the number of blocks accordingly) of a smart contract. Another

threat to validity is the generalizability of SMARTMARK.

Because the current implementation of SMARTMARK relies

on EtherSolve [37] to generate CFGs from smart contracts,

our evaluation may not be applicable with a different CFG

generator. Supporting additional CFG generators is part of our

future work.

VIII. RELATED WORK

Software Copyright and Smart Contracts. Protecting a

software copyright often helps to maintain productivity and

motivation of software development. Vast studies [46], [47],

[48] have been conducted on the methods to detect and/or

prevent a software piracy. Lately, the rise in popularity of smart
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contracts with the blockchain technology necessitates a new

suitable means to safeguarding an ownership [49], [50].

Smart Contract Code Reuse. Recent studies repeatedly show

that reusing code in a smart contract is quite prevalent [51],

[52], [53], [6], [5]. Chen et al. [6] reveal that 91.1% out

of 52,951 smart contract projects gathered by Etherscan [54]

(before August 2019) contain one or more subcontracts from

others. According to the analysis by Pierro et al. [5], a wide

adoption of code reuse in a smart contract arises from the

developers’ desire for building successful Ethereum DApps

and/or the lack of a well-integrated development tool. While

code reusability aids the quick and effortless development of a

smart contract, a security bug may bring about an unwelcome

outcome [1] as seen in the past incidents [55], [56], [57],

[58]. In the meantime, EClone [45] detects a replication of a

smart contract based on its birthmark. Note that SMARTMARK

is designed for embedding and verifying a watermark while

EClone aims to measure the similarity between smart contracts

without considering security.

Software Watermarking Schemes. A wide spectrum of

software watermarking techniques [8], [9], [10], [11], [7], [12],

[13], [15], [14], [16], [17], [18], [19], [20], [21], [22] have been

proposed to protect a software copyright. One of simple but

efficient approaches leverages code reordering [10], [11] at the

level of a basic block [10] or a function [11], which inserts

a watermark by mapping it into the order of code. Another

well-studied direction for software watermarking utilizes a

graph theory [7], [12], [13], [14] such as a graph coloring

problem [13]. Collberg et al. [7] store a graph structure

on the heap at runtime. Meanwhile, an obfuscation scheme

has been widely adopted [15], [16], [17], [18] in the field

of software watermarking, which includes inserting dummy

methods and opaque predicates [16], and steganography [17].

Besides, the idea of embedding a watermark into a target

application without modification (i.e., zero watermarking [19],

[20], [21]) has been introduced, however, its downside lies in

needing additional storage for bookkeeping. Meanwhile, Ma

et al. [22] introduce an return-oriented-programming (ROP)

based watermarking scheme, which inserts a well-crafted code

to be triggered into a data region for verification afterward.

However, applying prior software watermarking schemes to

a smart contract is impractical due to its unique properties

such as the restriction of code size (e.g., code relocation,

obfuscation), the absence of dynamic allocation (e.g., runtime

operation), and execution costs (e.g., dummy code insertion).

SMARTMARK proposes a distinct watermarking scheme tai-

lored to smart contracts for the first time by addressing the

above hindrances.

IX. CONCLUSION

Smart contracts fundamentally have different character-

istics from conventional programs. The difference induces

several restrictions on adopting existing software watermark

techniques to smart contracts. In this work, we present

SMARTMARK, a novel watermarking scheme on smart con-

tracts. Our empirical evaluation shows the practicality and ef-

fectiveness of SMARTMARK from both security and economic

perspectives, which is resistant to various attacks against a

watermark at acceptable cost.

X. DATA AND SOURCE CODE AVAILABILITY

To foster further watermarking research for smart contracts,

we disclose all of our evaluation dataset to the public. We

have opened the datasets on a preserved digital repository6

and source code7, so that anyone can reproduce our work.
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