
Sungkyunkwan University (SKKU) Security Lab x SecAI Lab. 1 ICSE 2023, May 14-20, Melbourne Australia

SmartMark: Software Watermarking
Scheme for Smart Contracts

Taeyoung Kim, Yunhee Jang, Chanjong Lee, Hyungjoon Koo, Hyoungshick Kim

Sungkyunkwan University, Korea

Sungkyunkwan University (SKKU) Security Lab x SecAI Lab. 2 ICSE 2023, May 14-20, Melbourne Australia Sungkyunkwan University (SKKU) Security Lab x SecAI Lab. 2 ICSE 2023, May 14-20, Melbourne Australia

Smart Contract

Smart contract
source code (Solidity)

Blockchain network Compilation
& Deployment

• A self-executing program on a blockchain that
ensures reliable transactions

• Its compiled bytecode is publicly available

…
PUSH1 0x40
MLOADDUP1
PUSH1 0x20

ADD
DUP3
MSTORE

…

constituted with
150 opcodes

contract bytecode

Ethereum Virtual Machine (EVM)

Stack

Storage MemoryGas

Sungkyunkwan University (SKKU) Security Lab x SecAI Lab. 3 ICSE 2023, May 14-20, Melbourne Australia Sungkyunkwan University (SKKU) Security Lab x SecAI Lab. 3 ICSE 2023, May 14-20, Melbourne Australia

DiviesInterface constant private Divies = DiviesInterface(0xc7…);
PlayerBookInterface constant private PlayerBook =

PlayerBookInterface(…);
…
string constant public name = "FoMo3D Long Official";
string constant public name = “Peach Will";
string constant public symbol = "F3D";
string constant public symbol = “PW";
…
function endRound(…){

uint256 _pot = round_[_rID].pot;
uint256 _win = (_pot.mul(48)) / 100;
uint256 _com = (_pot / 50);
uint256 _com = (_pot / 20);
…

}
…

Smart Contract Clones in the Wild

✓ Over 96% of 10M contracts have duplicates

✓ 73 DApps are plagiarized from 41 original DApps, incurring substantial financial losses[1]

[1] N. He et al., “Characterizing Code Clones in the Ethereum Smart Contract Ecosystem,” FC, 2020

DiviesInterface constant private Divies = DiviesInterface(0xc7…);
PlayerBookInterface constant private PlayerBook =

PlayerBookInterface(…);
…
string constant public name = "FoMo3D Long Official";
string constant public symbol = "F3D";
…
function endRound(…){

uint256 _pot = round_[_rID].pot;
uint256 _win = (_pot.mul(48)) / 100;
uint256 _com = (_pot / 50);
…

}
…

original FoMo3D
clone FoMo3D

However, there is no technical means to claim the smart contract originality on demand

[-]

[-]

[-]

[-]

[+]

[+]

[+]

To protect smart contracts from software piracy,
we propose a new software watermarking scheme for smart contracts

Sungkyunkwan University (SKKU) Security Lab x SecAI Lab. 4 ICSE 2023, May 14-20, Melbourne Australia Sungkyunkwan University (SKKU) Security Lab x SecAI Lab. 4 ICSE 2023, May 14-20, Melbourne Australia

Existing Software Watermarking Approaches

• Inserting (obfuscated) dummy code[3] or
(ROP) instructions[4] that make up a watermark

• Reordering code at the level of a block or a function[2]

• Using dynamically allocated memory
(e.g., dynamic graph watermark)[5]

[2] H. Kang et al., “SoftMark: Software Watermarking via a Binary Function Relocation,” ACSAC, 2021
[3] A. Monden et al., “A Practical Method for Watermarking Java Programs,” COMPSAC, 2000
[4] H. Ma et al., “Software Watermarking Using Return-oriented Programming,” CCS, 2015
[5] C. Collberg et al., “Software Watermarking: Models and Dynamic Embeddings,” POPL, 1999

reorder
code blocks

W

insert code

Key
sequence

heap

execute
a program

Sungkyunkwan University (SKKU) Security Lab x SecAI Lab. 5 ICSE 2023, May 14-20, Melbourne Australia Sungkyunkwan University (SKKU) Security Lab x SecAI Lab. 5 ICSE 2023, May 14-20, Melbourne Australia

Challenges in Smart Contract Watermarking

▪ Smart contracts have a code size restriction (24KB, EIP-170)

➢ A smart contract might not have enough code to be reordered

➢ It is hard to obfuscate dummy code against static analyses

▪ Running a smart contract incurs execution costs (gas)

➢ Inserting additional watermark instructions would make contracts non-economical

▪ Smart contracts are executed on Ethereum Virtual Machine (EVM)

➢ EVM does not support heap allocation, disabling a dynamic watermark construction

Sungkyunkwan University (SKKU) Security Lab x SecAI Lab. 6 ICSE 2023, May 14-20, Melbourne Australia Sungkyunkwan University (SKKU) Security Lab x SecAI Lab. 6 ICSE 2023, May 14-20, Melbourne Australia

Our Design Choices
Smart contract

source code (Solidity)

RUN Runtime
bytecode

Compile

CREATE Creation
bytecode

(has a constructor)

Use existing smart contract code

not inserting any watermark code

➢ Size and execution gas of a contract

stay intact even after watermarking

Deployment
gas

execution
gasexecution

gasExecution
gasInsert the hash of the watermark location

in a creation bytecode (constructor)

➢ The watermark location is confidential

Adopt a randomized approach of electing

watermark bytes from a contract bytecode

➢ An adversary cannot locate

a watermark through static analyses

①

②

③

Sungkyunkwan University (SKKU) Security Lab x SecAI Lab. 7 ICSE 2023, May 14-20, Melbourne Australia Sungkyunkwan University (SKKU) Security Lab x SecAI Lab. 7 ICSE 2023, May 14-20, Melbourne Australia

Control Flow
Graph (CFG)

SmartMark - Overview
• Our proposed software watermarking scheme for smart contracts

Source
code

RUN

Runtime
bytecode

Watermark

Watermark
Reference Object

(WRO)

Watermark
bytes locations

WRO MAC

comes from

generated from

Deployment
CREATE

Creation
bytecode

RUN

Runtime
bytecode

Author

CREATE

Inserting WRO MAC
into a constructor

(W: Watermark byte)

W

W

W

Contract account state

contract address
0xabcd … nonce

balance

storage hash

code hash

Runtime bytecode

storage

WRO MAC

RUN

Sungkyunkwan University (SKKU) Security Lab x SecAI Lab. 8 ICSE 2023, May 14-20, Melbourne Australia Sungkyunkwan University (SKKU) Security Lab x SecAI Lab. 8 ICSE 2023, May 14-20, Melbourne Australia

Opcode (Mnemonic) Gas

0x5B JUMPDEST 1

0x82 DUP3 3

0x01 ADD 3

0x91 SWAP2 3

0x90 SWAP1 3

0x60 PUSH1 3

0x52 MSTORE 3

0x60 PUSH1 3

0x60 PUSH1 3

0x20 SHA3 10

0x90 SWAP1 3

Opcode (Mnemonic) Gas

0x5B JUMPDEST 1

0x82 DUP3 3

0x01 ADD 3

0x91 SWAP2 3

0x90 SWAP1 3

0x60 PUSH1 3

0x52 MSTORE 3

0x60 PUSH1 3

0x60 PUSH1 3

0x20 SHA3 10

0x90 SWAP1 3

SmartMark – Watermark Bytes Election

Dispatcher

Exit

0x60 is the 8th byte
of this CFG block

Invalid

(PUSH1, ADD, POP)
(0x60, 0x01, 0x50)0x5B820191,

0x820191,

0x019190, … ,

0x60526060,

0x606020, …

Make opcode
sequences

0x5B820191,

0x606020

Randomly
select

Eliminate
unselected

opcodes

0x60 is the 5th byte
of this CFG block

Ignored

randomly selected
opcode sequences

W

W
W

W

(W: Watermark byte)

Sungkyunkwan University (SKKU) Security Lab x SecAI Lab. 9 ICSE 2023, May 14-20, Melbourne Australia Sungkyunkwan University (SKKU) Security Lab x SecAI Lab. 9 ICSE 2023, May 14-20, Melbourne Australia

How Efficient SmartMark is?
• Collected all 15,000,000 blocks in the Ethereum Mainnet
• Obtained 27,824 unique contracts using DBSCAN clustering from 4M smart contracts

4,112,336 contracts

Extract

DBSCAN clustering

27,824 unique contractsAll 15,000,000 blocks

…

21 June 202230 July 2015

➢ In SmartMark, an embedding process and a verification process take
average 11sec and 17sec, respectively, which is practically acceptable

Sungkyunkwan University (SKKU) Security Lab x SecAI Lab. 10 ICSE 2023, May 14-20, Melbourne Australia Sungkyunkwan University (SKKU) Security Lab x SecAI Lab. 10 ICSE 2023, May 14-20, Melbourne Australia

How Robust SmartMark is?

❖ Addition attack embeds another watermark into an already watermarked contract and

redeploys it

❖ Deletion attack eliminates a valid watermark from a watermarked contract

❖ Distortion attack

➢ SmartMark is resilient to these three attacks that aim to corrupt a watermark

encompasses transformation for damaging a watermark within a contract

Sungkyunkwan University (SKKU) Security Lab x SecAI Lab. 11 ICSE 2023, May 14-20, Melbourne Australia Sungkyunkwan University (SKKU) Security Lab x SecAI Lab. 11 ICSE 2023, May 14-20, Melbourne Australia

Theoretical Analysis on Distortion Attacks

W : Watermark byte

: CFG block

W

WW

Control Flow Graph (CFG)

: CFG block modified by an adversary

• The attack success probability of an adversary to successfully disable a watermark distorting a contract

➢ Only 8.9% of 27,824 contracts would be thwarted with more than
5% of attack success probability

L: Length of a watermark
Bs: # Watermarkable blocks
Ms: # Watermarkable blocks modified by an adversary

Sungkyunkwan University (SKKU) Security Lab x SecAI Lab. 12 ICSE 2023, May 14-20, Melbourne Australia Sungkyunkwan University (SKKU) Security Lab x SecAI Lab. 12 ICSE 2023, May 14-20, Melbourne Australia

Conclusion

• We present SmartMark, a software watermarking scheme tailored to
smart contracts

• We show SmartMark’s efficiency, effectiveness, and attack resiliency
through our empirical results and theoretical analysis

• We publicly release SmartMark source code and experimental dataset*

* https://github.com/SKKU-SecLab/SmartMark.git

Sungkyunkwan University (SKKU) Security Lab x SecAI Lab. 13 ICSE 2023, May 14-20, Melbourne Australia Sungkyunkwan University (SKKU) Security Lab x SecAI Lab. 13 ICSE 2023, May 14-20, Melbourne Australia

Thank you, Any questions?

https://github.com/
SKKU-SecLab/SmartMark

https://doi.org/10.6084/m9.figshare.
21966875.v2

	슬라이드 1: SmartMark: Software Watermarking Scheme for Smart Contracts
	슬라이드 2: Smart Contract
	슬라이드 3: Smart Contract Clones in the Wild
	슬라이드 4: Existing Software Watermarking Approaches
	슬라이드 5: Challenges in Smart Contract Watermarking
	슬라이드 6: Our Design Choices
	슬라이드 7: SmartMark - Overview
	슬라이드 8: SmartMark – Watermark Bytes Election
	슬라이드 9: How Efficient SmartMark is?
	슬라이드 10: How Robust SmartMark is?
	슬라이드 11: Theoretical Analysis on Distortion Attacks
	슬라이드 12: Conclusion
	슬라이드 13: Thank you, Any questions?

