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Smart Contract

Smart contract
source code (Solidity)

Blockchain network Compilation
& Deployment

• A self-executing program on a blockchain that 
ensures reliable transactions

• Its compiled bytecode is publicly available
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DiviesInterface constant private Divies = DiviesInterface(0xc7…);
PlayerBookInterface constant private PlayerBook =  

PlayerBookInterface(…);
…
string constant public name = "FoMo3D Long Official";
string constant public name = “Peach Will";
string constant public symbol = "F3D";
string constant public symbol = “PW";
…
function endRound(…){

uint256 _pot = round_[_rID].pot;
uint256 _win = (_pot.mul(48)) / 100;
uint256 _com = (_pot / 50);
uint256 _com = (_pot / 20);
…

}
…

Smart Contract Clones in the Wild

✓ Over 96% of 10M contracts have duplicates

✓ 73 DApps are plagiarized from 41 original DApps, incurring substantial financial losses[1]

[1] N. He et al., “Characterizing Code Clones in the Ethereum Smart Contract Ecosystem,” FC, 2020
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However, there is no technical means to claim the smart contract originality on demand
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To protect smart contracts from software piracy,
we propose a new software watermarking scheme for smart contracts
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Existing Software Watermarking Approaches

• Inserting (obfuscated) dummy code[3] or 
(ROP) instructions[4] that make up a watermark

• Reordering code at the level of a block or a function[2]

• Using dynamically allocated memory
(e.g., dynamic graph watermark)[5]

[2] H. Kang et al., “SoftMark: Software Watermarking via a Binary Function Relocation,” ACSAC, 2021
[3] A. Monden et al., “A Practical Method for Watermarking Java Programs,” COMPSAC, 2000
[4] H. Ma et al., “Software Watermarking Using Return-oriented Programming,” CCS, 2015
[5] C. Collberg et al., “Software Watermarking: Models and Dynamic Embeddings,” POPL, 1999
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Challenges in Smart Contract Watermarking

▪ Smart contracts have a code size restriction (24KB, EIP-170)

➢ A smart contract might not have enough code to be reordered

➢ It is hard to obfuscate dummy code against static analyses

▪ Running a smart contract incurs execution costs (gas)

➢ Inserting additional watermark instructions would make contracts non-economical

▪ Smart contracts are executed on Ethereum Virtual Machine (EVM)

➢ EVM does not support heap allocation, disabling a dynamic watermark construction
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Our Design Choices
Smart contract

source code (Solidity)

RUN Runtime
bytecode

Compile

CREATE Creation
bytecode

(has a constructor)

Use existing smart contract code 

not inserting any watermark code

➢ Size and execution gas of a contract 

stay intact even after watermarking

Deployment 
gas

execution 
gasexecution 

gasExecution 
gasInsert the hash of the watermark location 

in a creation bytecode (constructor)

➢ The watermark location is confidential

Adopt a randomized approach of electing 

watermark bytes from a contract bytecode

➢ An adversary cannot locate 

a watermark through static analyses
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Control Flow
Graph (CFG)

SmartMark - Overview
• Our proposed software watermarking scheme for smart contracts
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Opcode (Mnemonic) Gas

0x5B JUMPDEST 1

0x82 DUP3 3

0x01 ADD 3

0x91 SWAP2 3

0x90 SWAP1 3

0x60 PUSH1 3

0x52 MSTORE 3

0x60 PUSH1 3

0x60 PUSH1 3

0x20 SHA3 10

0x90 SWAP1 3

Opcode (Mnemonic) Gas

0x5B JUMPDEST 1

0x82 DUP3 3

0x01 ADD 3

0x91 SWAP2 3

0x90 SWAP1 3

0x60 PUSH1 3

0x52 MSTORE 3

0x60 PUSH1 3

0x60 PUSH1 3

0x20 SHA3 10

0x90 SWAP1 3

SmartMark – Watermark Bytes Election
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How Efficient SmartMark is?
• Collected all 15,000,000 blocks in the Ethereum Mainnet
• Obtained 27,824 unique contracts using DBSCAN clustering from 4M smart contracts

4,112,336 contracts

Extract

DBSCAN clustering

27,824 unique contractsAll 15,000,000 blocks

…

21 June 202230 July 2015

➢ In SmartMark, an embedding process and a verification process take 
average 11sec and 17sec, respectively, which is practically acceptable 
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How Robust SmartMark is?

❖ Addition attack embeds another watermark into an already watermarked contract and 

redeploys it

❖ Deletion attack eliminates a valid watermark from a watermarked contract

❖ Distortion attack 

➢ SmartMark is resilient to these three attacks that aim to corrupt a watermark 

encompasses transformation for damaging a watermark within a contract
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Theoretical Analysis on Distortion Attacks

W : Watermark byte

: CFG block

W

WW

Control Flow Graph (CFG)

: CFG block modified by an adversary

• The attack success probability of an adversary to successfully disable a watermark distorting a contract

➢ Only 8.9% of 27,824 contracts would be thwarted with more than 
5% of attack success probability

L: Length of a watermark
Bs: # Watermarkable blocks
Ms: # Watermarkable blocks modified by an adversary
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Conclusion

• We present SmartMark, a software watermarking scheme tailored to 
smart contracts

• We show SmartMark’s efficiency, effectiveness, and attack resiliency 
through our empirical results and theoretical analysis

• We publicly release SmartMark source code and experimental dataset*

* https://github.com/SKKU-SecLab/SmartMark.git
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Thank you, Any questions?

https://github.com/
SKKU-SecLab/SmartMark

https://doi.org/10.6084/m9.figshare.
21966875.v2
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