SmartMark: Software Watermarking
Scheme for Smart Contracts

Taeyoung Kim, Yunhee Jang, Chanjong Lee, Hyungjoon Koo, Hyoungshick Kim

Sungkyunkwan University, Korea

Sungkyunkwan University (SKKU) Security Lab x SecAl Lab. ICSE 2023, May 14-20, Melbourne Australia

Smart Contract

* A self-executing program on a blockchain that

ensures reliable transactions

* Its compiled bytecode is publicly available

Blockchain network

Compilation
& Deployment

Smart contract
source code (Solidity)

pragma solidity ~@.8.17;

import "./IERC28.s0l";

contract ERC20 is IERC20 {
uint public totalSupply;
mapping(address => uint) public balance0f;
mapping(address => mapping(address => uint)))
string public name = "Solidity by Example”;
string public symbol = "SOLBYEX";
uint8 public decimals = 18;

function transfer(address recipient, uint am
balanceof[msg.sender] -= amount;
balanceof[recipient] += amount;
emit Transfer(msg.sender, recipient, amg
return true;

}

function approve(address spender, uint amoun
= nool ondondlonandas =

Ethereum Virtual Machine (EVM)

contract bytecode

PUSH1 ©x40
MLOADDUP1
PUSH1 ©x20

constituted with
150 opcodes

Sungkyunkwan University (SKKU) Security Lab x SecAl Lab.

ICSE 2023, May 14-20, Melbourne Australia

To protect smart contracts from software piracy,

we propose a new software watermarking scheme for smart contracts

Sungkyunkwan University (SKKU) Security Lab x SecAl Lab. R} ICSE 2023, May 14-20, Melbourne Australia

Existing Software Watermarking Approaches

]]
« Reordering code at the level of a block or a functionl?l | HEE — - —
I]

code blocks

e Inserting (obfuscated) dummy codel®! or
(ROP) instructions!4 that make up a watermark

insert code |

—
—
—

;“
—
—
——
——
—

 Using dynamically allocated memory ey
(e.g., dynamic graph watermark)[! sequence | execute
a program
[2] H. Kang et al., “SoftMark: Software Watermarking via a Binary Function Relocation,” ACSAC, 2021
[3] A. Monden et al., “A Practical Method for Watermarking Java Programs,” COMPSAC, 2000

[4] H. Ma et al., “Software Watermarking Using Return-oriented Programming,” CCS, 2015
[5] C. Collberg et al., “Software Watermarking: Models and Dynamic Embeddings,” POPL, 1999

Sungkyunkwan University (SKKU) Security Lab x SecAl Lab. ICSE 2023, May 14-20, Melbourne Australia

Challenges in Smart Contract Watermarking

= Smart contracts have a code size restriction (24KB, EIP-170)
» A smart contract might not have enough code to be reordered
» ltis hard to obfuscate dummy code against static analyses

= Running a smart contract incurs execution costs (gas)
» Inserting additional watermark instructions would make contracts non-economical

= Smart contracts are executed on Ethereum Virtual Machine (EVM)
» EVM does not support heap allocation, disabling a dynamic watermark construction

Sungkyunkwan University (SKKU) Security Lab x SecAl Lab. ICSE 2023, May 14-20, Melbourne Australia

Our Design Choices

""""""""""""""""""""""""""""""""""""""" \ Smart contract
@ Use existing smart contract code i source code (Solidity)
. not inserting any watermark code | prags solidity 20,517
| > Size and execution gas of a contract et e {

1 I contract ERC20 is IERC20
| stay intact even after watermarking e e balanceots

mapping(address => mapplng(address =>» uint))
string public name = "Solidity by Example";
string public symbol = "SOLBYEX";

uint8 public decimals = 18;

@ Adopt a randomized approach of electing
: function transfer(address recipient, uint ar
watermark bytes from a contract bytecode | planceong sender) = smot |

» An adversary cannot locate
Deployment \l/
gas

a watermark through static analyses
ﬁ“‘“ Creation ﬁ” Runtime
bytecode bytecode

(has a constructor)

o o

Compile
|

™ ey

@ Insert the hash of the watermark location
i in a creation bytecode (constructor) |

gas

Y

S —————

Sungkyunkwan University (SKKU) Security Lab x SecAl Lab. ICSE 2023, May 14-20, Melbourne Australia

contract address
Oxabcd ..

-
- =~

+~ WRO MAC ™

storage hash

AY
|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

code hash

Sungkyunkwan University (SKKU) Security Lab x SecAl Lab. 7 ICSE 2023, May 14-20, Melbourne Australia

SmaritMark - Watermark Bytes Election

Ignored
— S (PUSH1,-
S (0x60,0 0x5B820191, !/)
r//\ Opcode (Mnemonic) | Gas 0x820191, n
W /| _Ox5B_| JUMPDEST 1 3ke opcode 0019190, .., =
i 0x82 | DUP3 3| [sequences 0x60526060,
0x01 | ADD 3 rapganyyAelected
opcode sequénces
0x91 | SWAP2 3 Randomly
) 0x5B820191, select

rcodagbo is the 8th b

PUSH1 3 0x60 is the 5th byte

. 0x60 | PUSH1 3 of this CFG block
W “ | ox20 |SHA3 10

Exit m ’

(W: Watermark byte)

'/ / Eliminate 0x606020
& W unsel

Sungkyunkwan University (SKKU) Security Lab x SecAl Lab. ICSE 2023, May 14-20, Melbourne Australia

How Efficient SmaritMark is?

« Collected all 15,000,000 blocks in the Ethereum Mainnet
« Obtained 27,824 unique contracts using DBSCAN clustering from 4M smart contracts

>

v

ethereum

30 July 2015 21 June 2022

DBSCAN clustering

All 15,000,000 blocks 4,112,336 contracts 27,824 unique contracts

» In SmartMark, an embedding process and a verification process take
average llsec and 17sec, respectively, which is practically acceptable

Sungkyunkwan University (SKKU) Security Lab x SecAl Lab. ICSE 2023, May 14-20, Melbourne Australia

How Robust SmartMarkis?

\/

* Addition attack embeds another watermark into an already watermarked contract and

redeploys it

\/

+» Deletion attack eliminates a valid watermark from a watermarked contract

X |Distortion attacklencompasses transformation for damaging a watermark within a contract

» SmartMarkis resilient to these three attacks that aim to corrupt a watermark

Sungkyunkwan University (SKKU) Security Lab x SecAl Lab. ICSE 2023, May 14-20, Melbourne Australia

Theoretical Analysis on Distortion Attacks

« The attack success probability of an adversary to successfully disable a watermark distorting a contract

Control Flow Graph (CFG)

7
%

?

F, S
:)c’,g
)

7

W : CFG block

W : Watermark byte
W : CFG block modified by an adversary

» Only 8.9% of 27,824 contracts would be thwarted with more than
9% of attack success probability

Pattack (L; BS; MS) —

11—

1

me(L,MS) (BS) (Ms) (Bs—Ms) L: Length of a watermark

(2

M L—i B_: # Watermarkable blocks

(BS) (BS) M, # Watermarkable blocks modified by an adversary
L)\ M,

Sungkyunkwan University (SKKU) Security Lab x SecAl Lab. ICSE 2023, May 14-20, Melbourne Australia

Conclusion

« We present SmartMark, a software watermarking scheme tailored to
smart contracts

« We show SmartMark’s efficiency, effectiveness, and attack resiliency
through our empirical results and theoretical analysis

« We publicly release SmartMark source code and experimental dataset”

* https://github.com/SKKU-SecLab/SmartMark.git

Sungkyunkwan University (SKKU) Security Lab x SecAl Lab. ICSE 2023, May 14-20, Melbourne Australia

Thank you, Any questions?

https://github.com/
SKKU-SecLab/SmartMark

https://doi.org/10.6084/m9.figshare.

i 21966875.v2

Sungkyunkwan University (SKKU) Security Lab x SecAl Lab. ICSE 2023, May 14-20, Melbourne Australia

	슬라이드 1: SmartMark: Software Watermarking Scheme for Smart Contracts
	슬라이드 2: Smart Contract
	슬라이드 3: Smart Contract Clones in the Wild
	슬라이드 4: Existing Software Watermarking Approaches
	슬라이드 5: Challenges in Smart Contract Watermarking
	슬라이드 6: Our Design Choices
	슬라이드 7: SmartMark - Overview
	슬라이드 8: SmartMark – Watermark Bytes Election
	슬라이드 9: How Efficient SmartMark is?
	슬라이드 10: How Robust SmartMark is?
	슬라이드 11: Theoretical Analysis on Distortion Attacks
	슬라이드 12: Conclusion
	슬라이드 13: Thank you, Any questions?

