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Decompilation is a process of converting a low-level machine code snippet back into a high-level programming

language such as C. It serves as a basis to aid reverse engineers in comprehending the contextual semantics of

the code. In this respect, commercial decompilers like Hex-Rays have made significant strides in improving

the readability of decompiled code over time. While previous work has proposed the metrics for assessing the

readability of source code, including identifiers, variable names, function names, and comments, those metrics

are unsuitable for measuring the readability of decompiled code primarily due to i) the lack of rich semantic

information in the source and ii) the presence of erroneous syntax or inappropriate expressions. In response,

to the best of our knowledge, this work first introduces R2I, the Relative Readability Index, a specialized metric

tailored to evaluate decompiled code in a relative context quantitatively. In essence, R2I can be computed by

i) taking code snippets across different decompilers as input and ii) extracting pre-defined features from an

abstract syntax tree. For the robustness of R2I, we thoroughly investigate the enhancement efforts made by

(non-)commercial decompilers and academic research to promote code readability, identifying 31 features

to yield a reliable index collectively. Besides, we conducted a user survey to capture subjective factors such

as one’s coding styles and preferences. Our empirical experiments demonstrate that R2I is a versatile metric

capable of representing the relative quality of decompiled code (e.g., obfuscation, decompiler updates) and

being well aligned with human perception in our survey.
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1 INTRODUCTION

Today, the software is commonly distributed in the form of (stripped) executable binaries, which
often lacks most of the high-level information available in the source code. A wide spectrum of
scenarios can encounter application bugs [Bessey et al. 2010], program crashes, security vulnerabil-
ities [Chandramohan et al. 2016; David et al. 2016; Eschweiler et al. 2016; Gao et al. 2018], or the
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need for malware analysis [Bruschi et al. 2006; Cesare et al. 2013; Yakdan et al. 2016]. To handle
such cases, comprehending the inner workings of a binary (i.e., binary reverse engineering; binary
reversing) becomes essential. However, binary reversing without appropriate tools is exceptionally
challenging because contextual meanings must be inferred from machine-interpretable code alone.
Decompilation stands as a fundamental technique for gaining insights because it involves convert-
ing low-level machine code into a (C-like) high-level programming language. A decompiler is a
program designed for the decompilation, comprising a set of components, including disassembly,
control, and data flow analyses, type inference, lifting to intermediate representations, and varying
optimizations, collectively producing a decompiled code.
Reversing practitioners largely rely on the quality of a decompiler’s output [Vector35 2023b],

namely the decompiled code, to comprehend a binary effectively. Hence, the quality of a decompiler-
producing code is crucial. In this context, commercial decompilers like Hex-Rays [Hex-Rays 2023b]
and Binary Ninja [Vector35 2023a] have been consistently enhancing a decompilation output [Hex-
Rays 2023a; Wiens et al. 2023], making it more accurate and readable. In a similar vein, open-source
decompilers like Ghidra [NSA 2023b], angr [Shoshitaishvili et al. 2016], and RetDec [Křoustek
et al. 2017] put considerable efforts on improving the readability of their outputs. Furthermore, a
plethora of study [Chen et al. 2010; Enders et al. 2023; Schulte et al. 2018; Yakdan et al. 2015] focus
on improving the readability of decompiled code by reducing the gap between the original code
and decompiled code.

To evaluate the readability of a given code, one needs a metric that can quantitatively measure it.
Early work like Buse et al. [Buse and Weimer 2008] and Posnett et al. [Posnett et al. 2011] propose
the readability metrics for source code, considering varying features like comments, function
names, variable names, and the number of identifiers. Later, Scalabrino et al. [Scalabrino et al. 2018,
2016] attempt to include meaningful textual features of the source code. However, applying the
aforementioned metrics for source code to decompiled code is unsuitable because 1 decompiler-
producing code does not contain rich semantic information that is available in the source, and 2
the code may introduce erroneous syntax or inappropriate expressions. Until today, the readability
metrics for decompiled code [Wirtanen 2022] is absent, necessitating a dedicated readability metric
for decompiled code.
In this work, to the best of our knowledge, we first devise the readability metrics tailored to

decompiled code, dubbed R2I (relative readability index). Simply put, given multiple (i.e., two
or more) decompiler-generating code snippets, the metric is designed for producing a relatively
quantitative value, ranging from 0 to 1. For handy computation, we develop a full-fledged readability
assessment system for decompiled code with R2I, which consists of the following four phases: 1
taking a binary as input and producing a decompiled code from a list of decompilers for comparison;
2 constructing an abstract syntax tree (AST); 3 extracting pre-defined features from the AST; and
4 calculating R2I with feature weights. To define appropriate features, we thoroughly investigate
the improvement efforts to promote decompiled code readability from both existing decompilers
and academic work, identifying 31 features that assist to obtain a reliable and robust index. Besides,
as measuring code readability inherently entails subjective criteria such as one’s coding styles
or preferences, we conduct a user survey (22 participants), thereby empirically arranging feature
weights. Note that defining those features and their weights for R2I is a one-time processing.

To demonstrate the practicality and the usefulness of R2I, we prepare 5,305 functions that have
been successfully decompiled from six decompilers of our choice (i.e., Hex-Rays [Hex-Rays 2023b],
Binary Ninja [Vector35 2023a], Ghidra [NSA 2023b], Radare2 [Radare 2023; Wargio et al. 2023a] 1,
RetDec [Křoustek et al. 2017], angr [Shoshitaishvili et al. 2016]). We confirm that the results of

1Radare2 has been implemented as the r2dec-plugin [Wargio et al. 2023a], which we refer to as Radare2 in our paper.
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R2I with our dataset are well aligned with those of our survey. Additionally, we applied R2I to the
outputs from different versions of the same decompiler and from obfuscated binaries, adequately
reflecting the differences.
The contributions of our paper are summarized as follows.

• We present R2I, the first Relative Readability Index for a decompiler-producing code snippet,
which is capable of measuring quantitative code readability (i.e., [0,1] range).

• We define 31 features for R2I comprehensively by considering readability-enhancing efforts
from existing decompilers and previous studies to promote source code readability. We also
conducted a user survey for the features that entail subjective criteria.

• We develop an end-to-end system to evaluate R2I, demonstrating its usefulness and prac-
ticality with varying experiments (e.g., obfuscated binary). We make our system publicly
available (§11) for future research in the realm of decompiled code readability.

2 BACKGROUND

This section describes the background of decompilers and the existing readability metrics.

Decompilation Utilities. A decompilation process [Wiki 2023] aims to convert a low-level
machine code snippet (e.g., assembly function) or bytecode (e.g., Java, C#, Python) back into a
high-level human-readable one, which aids reverse engineers in comprehending the underlying
code semantics [Emmerik and James 2007]. Such a process can serve various purposes, such as
1 understanding or recovering legacy code in case that the source is unavailable [Park et al. 2023],
2 analyzing potential security vulnerabilities [Shejwal et al. 2023], 3 identifying unexpected system
behaviors like bugs and malware [Yakdan et al. 2016], 4 facilitating software porting between
environments or platforms [Troshina et al. 2010], and 5 investigating the legality pertaining to
intellectual property violations or software copyright infringement [Melling and Zeidman 2012].

Decompilers. A decompiler is a program tailored to decompilation, producing a high-level
programming language like C and C++. Although decompilation predominately relies on the
design of a decompiler engine, in general, it goes through a series of (complex) reverse steps of
compilation in joint, including 1 disassembly, 2 control flow analyses, 3 data flow analyses,
4 intermediate representation (IR) generation, 5 data type inference, 6 code semantic analysis
and construction, and 7 built-in optimizations for better readability. Theoretically, a complete
decompiled code includes function parameters, variable types, invocations to another function with
suitable parameters, and a return value, which renders the recovered code readable and informative
(putting its accuracy aside). However, the product of each decompiler may significantly vary
depending on its own unique analysis algorithms and peculiar optimization strategies. To exemplify,
Figure 8b and Figure 8d present the outputs from two distinct decompilers, Hex-Rays [Hex-Rays
2023b] and Radare2 [Radare 2023; Wargio et al. 2023a]. Both follow C-like syntax, but the latter is
close to an assembly-like code because it directly utilizes a register as a variable name (e.g., rax,
esi). This work proposes a relative readability metric that can quantitatively compare a decompiled
code snippet with others.

Source Readability Metrics. Buse et al. [Buse and Weimer 2008] and Posnett et al. [Posnett
et al. 2011] propose the assessment metrics for the readability of source code. They define varying
features, including comments, number of identifiers, function names, and variable names, which
help help assess the source code’s readability level. Dorn [Dorn 2012] presents a generalizable model
of code readability based on a large-scale of human study (i.e., 5,000 participants) by harnessing
all tokens as identifiers for capturing rich semantics. However, those metrics are inapplicable
to a decompiled code snippet because of the absence of high-level information. For example,
as the original function name is unavailable in a stripped binary, it is common to name after a
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memory address (e.g., 0x40EDD0→ sub_40EDD0). Likewise, variables and parameters are named
with meaningless labels like v13 and a1. Besides, decompilers may generate syntactically invalid
code, making the decompiled code less readable. Unlike prior work, we focus on the readability
metric for decompiled codes.

3 DECOMPILED CODE READABILITY

This section briefly outlines the problem, the motivation, the objective, and the approach of a
readability metric for decompiled code, then delineates how we define the features of the metric.

3.1 Problem Statement and Our Approaches

Problem and Motivation. In general, decompiled code reconstructed from an executable binary
considerably differs from source code written in a programming language. Namely, the local features
of previous metrics for source code readability [Buse and Weimer 2008; Posnett et al. 2011] cannot
be directly applicable mainly because 1 decompiled code has been generated by a decompiler
(rather than a human programmer): e.g., keywords may be decompiler-specific; indentations are
unintentional; 2 semantic information has been disappeared:e.g., no comment remains; function
and variable names are randomly labeled; and 3 seemingly high-level code (i.e., C-like language)
may not obey a valid program expression or statement. However, to the best of our knowledge,
little has been conducted on a readability metric for assessing decompiled code quality.

Goal and Scope. We aim to devise a dedicatedmetric that allows one to relatively and quantitatively
evaluate decompiled code. In essence, our metric computes a relative readability index using two or
C-like decompiled codes across different decompilers, expressing that one is more or less readable
than another. We assume that a stripped binary has been written in a compiled language such as C,
C++, Golang [Meyerson 2014], Rustlang [Matsakis and Klock 2014], or Nimlang [Rumpf 2022] 2. We
design the metric to be calculated based on a (decompiler-recognized) function because it represents
a chunk of logical abstraction that performs an independent task. Identifying a function in a binary
is orthogonal to our work.

Our Approaches. Measuring code readability inherently involves subjective criteria because it
may rely on one’s coding style or preference. As such, we collect features to yield a reliable metric
as follows. First, we thoroughly investigate prior efforts on improving decompiled code readability
from existing works [Hex-Rays 2023a; Křoustek et al. 2023; NSA 2023a; Shoshitaishvili et al. 2023a;
Wargio et al. 2023a; Wiens et al. 2023], which aids in defining a set of features. For instance, one of
the industry-leading decompilers, Hex-Rays [Hex-Rays 2023b], constantly enhances the quality
of decompiled code from varying aspects (Table 2). Besides, we study academic contributions to
promote code readability [Buse and Weimer 2008; Chen et al. 2010; Dorn 2012; Enders et al. 2023;
Posnett et al. 2011; Scalabrino et al. 2018, 2016; Schulte et al. 2018; Yakdan et al. 2015]. Second,
we explore varying syntactic errors that hamper building an AST, extracting additional features
affecting code readability. Third, we conduct a user study that considers empirical preferences,
particularly when reading decompiler-producing code, assisting in adjusting relative weights
between features. It is worth noting that a relative readability metric fits into our goal under the
assumption that no original code is available (i.e., no absolute accuracy).

3.2 User Survey

We conducted two user surveys to account for subjective factors of the above features like code
styles, which play a crucial role in understanding coding preferences. The first survey served as a

2Note that we have yet tested on virtual-machine-based (e.g., Java [Oracle 2023]) or interpreted languages (e.g.,

Python [Van Rossum et al. 2022], Ruby [Matsumoto 2022]).
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(a) Education (b) Occupation (c) Decompiler Experience (d) Proficiency in C

Fig. 1. Participants’ demographics in our user survey. We consider various factors including education,
occupation, experience on decompilers, and C language proficiency.

Table 1. Summary of survey questions. Note that we request consent to collect private information from
a participant, including a name, phone number, and email. Additionally, we explicitly specify the purpose,
items, and retention period of the collected information.

(1) Participant Background
• What is the highest level of education you have completed?

High school, Bachelor, Master, Doctorate

• What is your occupation?

Undergraduate, Graduate, Security engineer, Software engineer, Faculty member

– Describe the main area of your expertise and career (in the case of an engineer or faculty)
– Describe the years of your experience.

• How long have you been programming in C?

None, Less than six months, 6 - 12 months, 12 - 36 months, More than 36 months

• Which decompiler do you mainly use?

• How long have you been using a decompiler?

None, Less than six months, 6 - 12 months, 12 - 36 months, More than 36 months

(2) User Preference & Conflicting Features
• Which of the two code snippets from the same source exhibits better readability?

– longer if condition and line length, shorter code lines, less nested if vs
shorter if condition and line length, longer code lines, more nested if

– for vs while
– while vs do-while
– switch vs if
– if vs ternary
– !strcmp vs strcmp in condition

(3) Comparison of the decompiled outputs generated by six decompilers
• Choose the most readable code excerpt.
• Choose the least readable code excerpt.

pilot study aimed at refining the appropriate design of the survey questions while the second focuses
on assessing how well the readability metric for decompiled code aligns with user perceptions.

Participants. We recruited 22 participants from various sources: vulnerability discovery organiza-
tions, universities, and IT industries. Figure 1a depicts their educational backgrounds, ranging from
high school diplomas to doctorate degrees. Figure 1b represents varying work experiences: 27.3%
are computer science professors engaged in the security field, 9.1% work as security engineers
specializing in areas such as binary analysis and vulnerability discovery, 22.7% are software engi-
neers, developing embedded software such as automotive and smartphones, while 13.6% and 27.3%
are undergraduate and graduate computer science students, respectively. Additionally, as shown
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Table 2. Summary of the 31 features for decompiled code readability. The symbols (↑, ↓) represent that higher
and lower values for be�er readability. The origin column indicates that each feature has been carefully
elected from the existing [D]ecompiler efforts to enhance code readability [Hex-Rays 2023a; Křoustek et al.
2023; NSA 2023a; Shoshitaishvili et al. 2023a; Wargio et al. 2023a; Wiens et al. 2023], [P]rior work [Buse and
Weimer 2008; Chen et al. 2010; Dorn 2012; Enders et al. 2023; Posne� et al. 2011; Scalabrino et al. 2018, 2016;
Schulte et al. 2018; Yakdan et al. 2015], or [S]yntatic errors. Note that (✳) means a feature that leads to
indirect improvement. A,B,G,H, R2, and RD represent Angr [Shoshitaishvili et al. 2016], Binary ninja [Vector35
2023a], Ghidra [NSA 2023b], Hex-Rays [Hex-Rays 2023b], Radare2 [Radare 2023; Wargio et al. 2023a], and
RetDec [Křoustek et al. 2017], respectively.

Class No Origin Feature Description Decompiler

Code F1 D/P [↑] # of array detections Improvement on identifying arrays and structures B, G, H, RD
Quality F2 D/P [↓] # of operators Improvement on identifying 64-bit variables and bit operations H

Improvement on identifying compiler idioms (✳) H
Simplification of bit arithmetic expressions A, H, RD
Simplification of multi-part boolean expressions G
Optimization of modulo/remainder calculations G

F3 D/P [↓] # of comma operators in conditions Elimination of comma operators in conditions G, H
F4 D [↓] # of goto statements Elimination of goto statements to reduce redundant call invocations H

Reduction of goto statements A, H

F5 D [↓] # of inline assembly
Improvement on identifying floating points,

SSE operations, and intrinsic functions
H

F6 D [↓] # of missing conditions Clarification on conditions: e.g., while(true)→ while(condition) H, RD
Clarification on conditions:

e.g., for(i=0; ;++i)→ for(i=0;condition;++i)
H

F7 D/P [↓] # of nested casting operators Elimination of unnecessary casts G, RD

Improvement on identifying 64bit variables and bit operations (✳) H
Improvement on identifying data type

through TEK/KPCR reference support (✳) H

Improvement on identifying typedef relationships
between data and types

G

F8 D [↓] # of references/dereferences Improvement on identifying arrays and structures (✳) B, G, H, RD
Elimination of dereferences of array arguments & addresses A, RD

F9 D [↓] # of unnecessary goto labels Elimination of unnecessary goto labels A, RD
F10 D/P [↓] # of variables Aggressive variable elimination and propagation A, H, RD

User

Preference
F11 D [↑] Ratio of conditional statements Preference of switch over if statements A, B, RD

Preference of ternary operators over if
to reduce the line of code

A

F12 D [↑] Ratio of loop statements Preference of for over while or do-while loops A, H, RD
Preference of while over do-while loops H

F13 D [↑] Ratio of !strcmp in conditions Preference of !strcmp over strcmp in conditions H

Conflicting F14 D [↓] Max # of conditions in if statements Increase if statements to reduce the length of a line H
Features F15 D/P [↓] Max # of nested if statements Increase the length of if conditions to reduce nested if statements A, H, RD

F16 D/P [↓] Max length of a line Reduction of the length of a line by decreasing cast and bitwise operators (✳) A, G, H, RD

F17 D/P [↓] Line of code Elimination of LLVM intrinsics: e.g., llvm.ctpop.* (✳) RD

Improvement on identifying inlined and built-in functions (✳) B, H
Reduction of line of code by removing dead or redundant code A, B, G, RD

Erroneous

Syntax
F18 S [↓] # of multiple types

A data type has been unclearly defined
(e.g., unknown, undefined, or multiple type)

A, G, H

F19 S [↓] # of invalid goto statements A goto statement has been erroneously labelled B, G, R2
F20 S [↓] # of invalid do-while loops A do-while statement has been inaccurate (e.g., boundary) R2
F21 S [↓] # of invalid function calls A function invocation has been invalid or unclear R2
F22 S [↓] # of remaining IRs A decompiled code contains intermediate representations A
F23 S [↓] # of unimplemented parts A code decompilation has been explicitly unimplemented B
F24 S [↓] # of unknown expressions A conditional expression or variable has been undefined or unclear A, R2
F25 S [↓] # of invalid argument A function argument has been invalid RD
F26 S [↓] # of unknown operators A conditional expression contains an unknown operator R2

General F27 P [↓] # of tokens Total number of tokens N/A
Features F28 P [↓] # of conditions Total number of conditional statements N/A

F29 P [↓] # of loops Total number of loop statements N/A
F30 P [↓] # of assignments Total number of assignments N/A
F31 P [↓] Max # of nested loop statements Maximum number of nested loop statements N/A

in Figure 1c, 77.3% of participants have decompiler experiences, with 9.1% having 1 to 3 years of
experience and 31.8% over three years, mainly for security research and vulnerability analysis.
Others have used decompilers for educational purposes, such as class projects. Among the various
decompilers, 76.5% have experience with Hex-Rays [Hex-Rays 2023b], 11.8% with Ghidra [NSA
2023b], and another 11.8% with JD-GUI [Dupuy 2023]. All participants confirmed their proficiency
in the C programming language, while 77.3% utilize it in their work (Figure 1d).
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Pilot Study. Prior to the primary survey, we conducted a pilot survey involving five participants,
two of whom possess significant expertise in binary analysis and extensive experience with de-
compilers. The survey mainly includes the outputs from the six decompilers of our choice, asking
their rankings (i.e., 1st, 2nd, ..., 6th). The pilot survey yielded valuable insights and feedback: 1
determining the rankings of all decompiled codes is challenging; 2 the examples are a little too
long to read the codes; 3 a direct code-length comparison is ambiguous due to the absence of line
numbers. In response, we 1 simplify the ranking questions for participants to select the most and
least comprehensible code alone from the provided examples; 2 select a set of brief example code
snippets for participants to discern code features clearly; 3 insert line numbers in decompiled code
for better readability.

Survey Design. The main survey presents the pairs of decompiled code, each exemplifying
specific features from the User Preference and Conflicting Features categories in Table 3. Participants
were instructed to choose one of the two options based on their preferences. To ensure clarity,
comprehensive information about the features represented by each decompiled code was provided.
Furthermore, participants were asked to provide supplementary comments in case they selected a
particular option. Subsequently, we selected decompiled code from six decompilers (as detailed
in §6) and requested the participants to identify the best and the worst decompiled code in terms of
readability. The six decompiled code excerpts were presented side by side, enabling the participants
to clearly observe the code differences between each decompiler. We ensure the chosen decompiled
codes to encompass all the features that are taken into account for our metric. Table 1 provides
some example questions from our survey. In appreciation for their time and efforts, we offered a
$23 gift card (in USD) to the participants.

3.3 Features for Decompiled Code Readability

Feature Exploration. Table 2 summarizes the 31 factors (i.e., features) that impact on decompiled
code readability. The features originate from the improvements of existing decompilers, prior
work, and syntactic errors with the following considerations. First, most decompilers continuously
strive to improve the readability of their outputs, producing concise but accurate expressions by
recovering the original program logic. Hence, we analyze the decompiler’s efforts to enhance
code readability, including the official website [Hex-Rays 2023a; Wiens et al. 2023] and change
logs [Avast 2023; NSA 2023a; Shoshitaishvili et al. 2023b; Wargio et al. 2023b]. Furthermore, we
investigate decompilers’ source code [Křoustek et al. 2023; Shoshitaishvili et al. 2023a; Wargio et al.
2023a] (in the case of open source), specifically focusing on the optimization module to improve
readability levels. Our findings show that Hex-Rays [Hex-Rays 2023a] has the most substantial
number of improvements, totaling 105, followed by Binary Ninja [Wiens et al. 2023], Ghidra [NSA
2023a], RetDec [Křoustek et al. 2023], and Angr [Shoshitaishvili et al. 2023a] with 18, 51, 43, and 21
enhancements, respectively. Second, we study prior work on code readability metrics [Buse and
Weimer 2008; Chen et al. 2010; Dorn 2012; Enders et al. 2023; Posnett et al. 2011; Scalabrino et al.
2018, 2016; Schulte et al. 2018; Yakdan et al. 2015]. Third, we extract peculiar features that harm
readability (i.e., by increasing ambiguity and obscurity) while correcting syntax errors, which have
not been previously taken into account in source code. Of all, as in Table 2, we define the 31 features
in total, including 17 features (F1-F17) from decompilers’ efforts, 13 features (F[1-3,7,10,15-17,27-31])
from previous studies, and nine features (F18-26) from erroneous syntax at decompiled code.

FeatureCategorization. Over the 31 features from various sources in Table 3, we largely categorize
them into five feature groups: code quality, user preference, conflicting features, erroneous syntax,
and general features. First, the ten features are grouped to the Code Quality class, which directly
improves the readability of decompiled code, including simplifying control flows, eliminating
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1 //Hex-Rays
2 // F16 vs F17
3 return sub_40EDD0(
4 v9,
5 v8,
6 *(&off_419580[8 * (unsigned int)(v7 + v13)]
7 + 4 * v6
8 + 2 * (unsigned __int8)byte_6256EF
9 + (unsigned __int8)byte_6256B4));
10
11 //Angr
12 unsigned long | unsigned int v4; // F18
13 xmm1<8> = Conv(32->128, Load(addr=rdx<8>, size=4,

endness=Iend_LE)); // F22↩→
14 if ((char)((unsigned long long)(unsigned int)(BinaryOp

CmpF & 69) >> 6)) & 1) != 1) // F7, F22↩→
15 {
16 v3 = v2[1]; // F1
17 }

1 //Binary Ninja
2 // F2, F16 vs F17
3 rax_2 = sub_40edd0(rdi_1, rsi_1, *(((data_6256b4 +

((data_6256ef + ((rax_5 + ((rdx_3 + r8_1) << 1)) <<
1)) << 1)) << 3) + 0x419580));

↩→
↩→

4
5
6 //Radare
7 if (rax <= 0x41d810) {
8 goto label_0; // F4
9 }
10 __asm ("comiss xmm1, dword [0x0041d82c]"); // F5
11 if (rax < 0x41d810) {
12 goto label_0; // F4
13 }
14 label_0: // F4
15 *(rdi) = 0x41d810;
16 eax = 0;
17 rax = rcx + rax*2;

Fig. 2. Illustration of decompiled code excerpts from Hex-Rays and Angr (le�), and Binary Ninja and Radare2
(right). The example codes help us to determine the common features of F1-2, F4-5, F7, F16-18, and F22.

unnecessary variables, and reducing nested casts. Second, we put three features into the User

Preference category because they can rely on one’s coding style or individual preferences. For
instance, one prefers to choose between for, while, or do-whilewhen dealing with a loop statement
(F11 in Table 2), which cannot tell absolutely better readability. To accommodate the features
pertaining to user preference, we further subdivide the F11 feature into F11-switch, F11-if, and
F11-ternary, and assign different weights based on the survey results. In the same vein, we subdivide
F12 into F12-for, F12-while, F12-dowhile, and F13 into F13-!strcmp and F13-strcmp. Third, we
separately group the four features in conflict with each other because improving one feature may
have a negative impact on others. For instance, reducing nested-if statements by combining
multiple if statements could increase the number of conditions within those if statements. Such
features are categorized under the Conflicting features category. Fourth, nine additional features are
associated with syntax errors, which are grouped under the Erroneous Syntax class. Decompilers
frequently generate code with invalid syntax due to their inability to decompile or when essential
information, such as variable types and function names, is missing from the binary. Lastly, the
remaining five features have been obtained from the previous work on readability metrics for
source code, grouping them as the General features category. We conducted a thorough examination
of these metrics and incorporated the features that are applicable to a decompiler’s output.

Feature Examples. Figure 2 presents code excerpts from the Hex-Rays, Binary Ninja, Angr, and
Radare2 decompilers, containing the selected features. Notably, for the same function call statement
on line 3 (e.g., 0x40EDD0), Hex-Rays and Binary Ninja generates different codes. Hex-Rays tend to
create more lines of code (F17) for readability whereas Binary Ninja does longer lines (F16) with
relatively more operators (F2) on line 3 than Hex-Rays’. Radare2 commonly utilizes goto statements
(F4) on lines 8, 12, and 14, along with frequent inline assembly (F5) on line 10. Angr’s code exhibits
unclear elements, such as declaring variables of unknown type (F18) on line 12, using intermediate
representations like Conv and BinaryOp (F22) on line 14, and employing multiple nested casts (F7)
on line 14.

Relative FeatureWeights. We design our readability metric so that it can parameterize the relative
feature weights that account for individual subjective factors. In this study, we initially assigned an
equal weight of 0.0323, calculated as 1/31, to each feature, given that there are 31 features in total.
For features within the User-Preference and Conflicting categories, we assigned different weights
based on the results of our user survey. Regarding conditional statements, 90.9% of participants
favored switch over if, as indicated in Figure 3 (F11). Moreover, 59.1% of participants preferred if
over ternary. Consequently, we assigned a higher weight (0.0161) to switch (F11-switch), calculated
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Fig. 3. Survey results of participants’ preferences for the features (F11-13 in Table 3). The participants
responded that code readability increases in the order of switch, if, and tenary for conditional statements;
for, while, and do-while for loops; and !strcmp over strcmp for string comparisons. The hatched pa�ern
represents no preference.

Binary Decompilation

Erroneous Syntax

Correction

Abstract Syntax Tree

Feature 

Extraction

Code Features

Feature     

Weights
User Survey

Readability Index

Metric

Computation

Fig. 4. Overview of our readability assessment system for decompiled code. With a given binary ( 1 ), target
decompilers produce decompiled code ( 2 ). As a pre-processing, we correct syntactic errors to generate an
abstract syntax tree ( 3 ; §4.1) that assists in extracting code features. Meanwhile, we pre-define useful features
and their weights ( 6 ; §3.3) from a user survey ( 5 ; §3.2), which is a one-time process (i.e., do�ed box). Finally,
we compute a relative readability index ( 7 ; §4.2) from the features and weights.

as ((1/31) ∗ (3/6)). For if (F11-if), we applied a weight of 0.0108 ((1/31) ∗ (2/6)), and for ternary
(F11-ternary), a weight of 0.0054 ((1/31) ∗ (1/6)) was assigned. Similarly, based on participant
preferences indicated in Figure 3 (F12), we assigned a weight of 0.0161 to for (F12-for), 0.0108
to while (F12-while), and 0.0054 to do-while (F12-dowhile), with most participants favoring for,
followed by while, and then do-while. Lastly, our survey demonstrated that code using !strcmp
is perceived as more readable than code using strcmp when comparing strings. Additionally, all
participants agreed that having fewer conditions in if statements (F14) is preferable to nested if
statements (F15). Furthermore, all participants favored shorter line length (F16) over longer lines of
code (F17). We assigned different weights to these features based on these survey results, similar to
our approach for F11-if, F11-switch, and F11-ternary. It is important to note that these weights can
be customized flexibly according to the specific context.

4 RELATIVE READABILITY INDEX FOR DECOMPILED CODE

This section defines a relative readability index for decompiled code. For handy comparison,
we develop a system that can assess decompiled code readability that takes a binary as input and
computes the individual indexes for target decompilers.

Overview. Figure 4 depicts the overview of our code readability evaluation process tailored
to decompiled code. First, we have a list of decompilers that produce (binary-function-based)
decompiled code snippets ( 2 ) from a given binary ( 1 ). A naïve decompiler-generated code typically
entails a distinct high-level code, which often contains an erroneous syntax or expression. This is
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Table 3. Various syntax error examples in C-like decompiled code outputs. We fix those codes so that one can
construct an AST for further computing a code readability index. We selectively define features (“Erroneous
Syntax” category in Table 2) that hurt the readability, excluding trivial errors like a missing parenthesis (e.g.,
dash(-) in the feature column). The description column indicates a regular express pa�ern to detect each
example (unless otherwise stated).

Error Type Feature Example Correction Description

Declarations F18 unsigned int | char v0; undefined v0; /^[\w\s\*(\[\d+\])]+(\|[\w\s\*(\[\d+\])]+)+/

F18 undefined v1; typedef int undefined; (Defining a new type in a custom header)
F18 (_UNKNOWN *)v19 typedef void _UNKNOWN; (Defining a new type in a custom header)
F18 code **ppcVar1; typedef int code; (Defining a new type in a custom header)
- signed int64_t var; int64_t var; /[\s\(]signed\sint[^\s\)]+/

Structures F19 LAB_004c8dba: } INVAL_LAB; (Devising a detection routine)
F20 do{ .. } .. }while(..) INVAL_DOWHILE; (Devising a detection routine)

Identifiers F21 void (*0x401350)()(); INVAL_FUNCALL(); /\)\([\s\S,()*+]*\)\s\([\s\S,()*+]*\);/

- rdx:rax rdx_rax /(rdx:rax)|(edx:eax)/

- rsp<8> = 5; rsp = 5; /(?<![a-z])[a-z]{2,3}<\d+>/

- v6 = ::s1; v6 = s1; /\S*::\S*/

Expressions F24 if(...) if(unknown) /if\s?\(\.\.\.\)/

F24 (? > ?) ? 1 : 0; (unknown) ? 1 : 0; /\(\s*\?\s*[!<>=]+\s*\?\)/

F24 ? = fp_stack[0] (unknown) = fp_stack[0] /^\s*\?\s\=\s/

F25 setjmp({(struct{ }) setjmp(INVAL_FORM) /jmp\(\s*\{/

- &&var5[0] &(&var5[0]) /&&\S/

- __asm { } __asm ( ) /__asm\s{.*}/

- assert("!\"invalid\"); assert("!\"invalid\""); /[^\\]\\"(,|\)*;$)/

- int start(..) __noreturn noreturn int start(..) /_{0,2}noreturn/

- v1 = 10f v1 = 10.0f /[\s\(]-?\d+f/

Operators F26 if(ebp overflow 0) if(UNKNOWN_OP) /(if|while).*overflow/

Eccentricities F22 Conv(16 ->128, di); INVALID_IR; /Conv\(|BinaryOp\s[A-Z]/

F23 x = /*x = unimplemented { }*/; x=UNIMPL; //\*.*\*/(?=\)*;)/

mostly because a decompiler does not aim to produce re-compilable code but to focus on human-
readable code generation (i.e., de-prioritizing syntactic errors). Second, we correct syntactic errors
so that one can generate an abstract syntax tree ( 3 ; §4.1). Next, we extract the predefined features
( 4 ) in Table 2 from each tree. Note that the feature weights ( 6 ; §3.3) are pre-computed via a
user survey ( 5 ; §3.2). Finally, using the features and their relative weights, we compute a relative
readability index ( 7 ; §4.2) across target decompilers.

4.1 Feature Extraction with ASTs

Once a decompiled code snippet (i.e., function-based code identified by a decompiler) is obtained,
we build an AST from the code to extract the pre-defined features. As the decompilers in our
experiments follow C-like syntax, we construct a C-based AST. However, the original decompiled
code contains a variety of erroneous syntax, which cannot be directly built to an AST form.

Syntactic Error Types. We categorize (C-like; delimited by a semi-colon) statements that incor-
porate syntactic errors into six error types: 1 declarations (e.g., wrong data types), 2 structures
(e.g., invalid structures), 3 identifiers (e.g., incorrect identifiers), 4 expressions (e.g., inappropriate
expressions), 5 operators (e.g., unknown operators), and 6 other compiler-specific eccentricities
(e.g., unexpected handling routines, missing implementation like unimplemented). Table 3 summa-
rizes such error types, corresponding features (if any), and how to resolve erroneous syntax with a
variety of instances.

Erroneous SyntaxCorrection. Inmost cases, we can address the above issues either 1 by defining
new types with typedefs in a custom header or 2 by replacing erroneous cases with the forms
that can be readily built into an AST using regular expressions. For example, we define a new data
type in the custom header in case that a variable has been declared with a wrong type like signed,
undefined, or UNKNOWN. Similarly, we utilize a regular expression to capture incorrect identifiers (e.g.,
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void (*0x401350), rsp<8>, ::s1), inappropriate expressions (e.g., ... in a conditional statement,
__asm{}, ? > ?), and unknown operators (e.g., ebp overflow 0). However, it requires 3 logical
and deductive approaches to fix a malformed structure. For example, do{ .. } .. } while(..)
in Table 3 does not hold the even number of parentheses (e.g., opening/closing) in a statement. As
a final note, we fix a trivial syntax error for building an AST rather than defining it as a feature
(e.g., __asm{}→ __asm()).

4.2 Relative Readability Index for Decompiled Code

Metric Design. The readability metric for decompiled code is designed with the following func-
tionalities in mind, which can 1 provide a handy readability index that can be determined with a
straightforward range (i.e., (0, 1)), 2 represent a readability difference in both relative and quantita-
tive manners, and 3 process decompiler-generated code appropriately to compute the index.

Readability Index for Decompiled Code. We introduce the relative readability index (R2I)

for decompilers’ outputs, which is capable of representing quantitative differences between the
decompiled code. By design, R2I can be computed merely when there are multiple decompilers (i.e.,
= >= 2). Suppose that we have = different decompilers,< features that are obtained from AST, and
relative feature weights (

∑<
8=1F8 = 1) from our user study. Let An×m be a matrix that holds every

value of a 9th feature for an 8th decompiler. Then, we apply a transformation on the matrix () (A))
with the following two processes: 1 reducing the number of features (i.e.,< →<′) by eliminating
all feature values that are the same across decompilers (i.e., 5<0G − 5<8= = 0), and 2 taking the
delta per feature (i.e., Δ 9 = 59 − 5<8=), followed by computing an exponential decay function (i.e.,
4−G ). We denote A ∈ {0, 1} according to two distinct feature groups: 1 the smaller value, the better
readability (A = 1; e.g., the number of tokens, line of code) whereas 2 the larger, the better (A = 0;
e.g., the number of array). Note that this term assists in handling both feature groups so that the
final index preserves the same direction. Now we can obtain A

′
n×m

′ throughout an element-wise
computation as follows:

A
′
= ) (A) : 0′8 9 = A · 4− log10 (1+Δ8 9 ) + (1 − A ) · (1 − 4− log10 (1+Δ8 9 ) ) (1)

Because the number of features has relatively decreased, we adjust the feature weights (, ′)
accordingly.

, ′ : F ′
8 =

F8∑<′

8=1F8

s.t.

<′∑

8=1

F ′
8 = 1 (2)

Finally, we can compute R2I with the following matrix multiplication, resulting in a relative
readability metric for each decompiler.

'2� = A
′ ·, ′) (3)

The metric ranges from 0 to 1 where a value that is close to 1 indicates relatively good code
readability, or 0 otherwise. The benefit of this approach is to relatively reveal readability-favored

features with adjusted weights while ignoring identical features. It is worth noting that the R2I
metric represents the relative differences based on a given list of decompiled codes (i.e., rankings
in the list), not the gaps on a different list (i.e., rankings between the list) because R2I stays away
from an absolute metric.

5 IMPLEMENTATION

This section describes the implementation of our R2I-based assessment system in detail.

Recognizing Target Functions. As described in §3.1, we compute R2I at the granularity of a
function. We rely on each decompiler’s capability of identifying a function boundary, followed by
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Table 4. We curate six popular decompilers, most of which are under active development or improvement.

Decompiler IR Version Release

Commercial
Hex-Rays [Hex-Rays 2023b] Microcode 8.2 Jan. 08, 2023
Binary Ninja [Vector35 2023a] BNIL 3.3 Jan. 26, 2023

Open-source

RetDec [Křoustek et al. 2017] LLVM IR 5.0 Dec. 08, 2022
Ghidra [NSA 2023b] p-code 10.2.3 Feb. 09, 2023
Angr [Shoshitaishvili et al. 2016] VEX IR 9.2.40 Mar. 01, 2023
Radare2 [Radare 2023; Wargio et al. 2023a] ESIL 5.8.4 Mar. 15, 2023

including the functions in a code region (i.e., .text section) while excluding system-linker-inserted
ones (e.g., _start, deregister_tm_clones, register_tm_clones etc.). Note that we associate a
function with an address because of variations in function naming schemes across decompilers.

Building ASTs. We utilize pycparser [Eliben 2023], one of the popular open-source parsers for C
code, to construct an AST. Given that decompiled code may not strictly adhere to C syntax, we
modified the parser to deal with syntactic errors (§4.1).

Extracting Features. We wrote a script that can extract the pre-defined features on top of an
AST by counting the occurrences of relevant nodes or sub-trees that hold the feature. Note that we
directly obtain the features of a code length and a line length from the original decompiled code.

6 EVALUATION

This section defines the following three research questions, demonstrating the usefulness of R2I.

• RQ1: Practicality of R2I. How well is R2I aligned with human perception in our survey?
• RQ2: Effectiveness of R2I. How effective is R2I in evaluating the readability of decompiled
code (in terms of applicability)?

• RQ3: Correlations of Features. How are the features and R2I correlated with each other?

Dataset and Environmental Setup. We evaluate the R2Imetric using GNU Coreutils 8.29 [GNU
2017] and Findutils 4.6.0 [GNU 2015], compiled with GCC 8.2.0 at the optimization level O2. We
remove debug symbols from binaries to reflect real-world scenarios. Moreover, the decompilation-
failing binaries (e.g., size > 150 KB) by (at least) one of the six decompilers have been excluded 3,
resulting in a corpus containing 103 Coreutils binaries and four Findutils binaries. With our
corpus, decompilers identify 68,464 functions as a whole, out of which 5,305 functions (i.e., 7.75%) are
detected by all decompilers in our experiments. To compute relative metrics, we utilize these 5,305
functions to assess the effectiveness of R2I. Note that we utilize the LLVM obfuscator [Junod et al.
2017] to generate obfuscated binaries. The evaluation was conducted on Ubuntu 20.04, equipped
with an Intel(R) Core(TM) i9-11900 @ 2.50GHz processor with 16 cores and 96 GB RAM.

Selective Decompilers. For this study, we choose six decompilers from the (non-comprehensive)
list [Vector35 2023b] that 1 support the decompilation of 64-bit executables in ELF (Executable
and Linking Format) [Committee 1995], and 2 are under active development (i.e., updates within
the last six months as of writing). Table 4 summarizes the popular decompilers, including two
commercial-off-the-shelf (COTS) products (i.e., Hex-Rays [Hex-Rays 2023b] version 8.2, Binary
Ninja [Vector35 2023a] version 3.3), and four open-source software (i.e., Ghidra [NSA 2023b] version
10.2.3, Radare2 [Radare 2023; Wargio et al. 2023a] version 5.8.4, RetDec [Křoustek et al. 2017] version
5.0, and angr [Shoshitaishvili et al. 2016] version 9.2.40). Note that most of them are designed as

3du, tr of Coreutils, and find, locate of Findutils have been ruled out.
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(a) R2I distribution with our dataset
across six decompilers

(b) Ratio of the best and the worst decompiler chosen by our
survey participants

Fig. 5. (a) The boxplot shows that decompiled code by Hex-Rays has be�er readability (i.e., median R2I =
0.608) than others. (b) We asked the participants to choose the best (Hex-Rays; le�) and the worst (Radare2;
right) decompilers for code readability, which is well-aligned with the R2I ranking of the decompilers in (a).

a binary analysis framework, thus encompassing other features like disassembly and symbolic
execution as well as decompilation.

6.1 RQ1: Practicality of R2I.

To examine the feasibility of R2I as a code readability assessment metric, we compute R2I to
evaluate the readability of decompiled code produced by six decompilers. We then compare these
results with those obtained from the second user survey, seeking to determine the alignment
between the R2I metric and user perceptions of decompiled code.

R2I Results. We compute R2I for individual functions within the binaries and subsequently
average them per binary, ranking the decompilers. Figure 5a depicts the average R2I scores for
107 binaries from Coreutils and Findutils. Hex-Rays attains the highest R2I of 0.604 on average,
followed by Binary Ninja at 0.553, and Ghidra at 0.539. RetDec and Angr achieve the indexes of
0.528 and 0.501, respectively, while Radare2 has the lowest index of 0.448.

Our Survey Results. In our main survey, the participants provided feedback on the most and least
comprehensible decompiled code among the six decompilers. Figure 5b illustrates the results, with
58.3% of participants selecting Hex-Rays’ decompiled code as the most readable. Binary Ninja ranks
second with 14.4%, closely followed by Ghidra at 8.3%. The remaining decompilers, Angr, RetDec,
and Radare2, received 6.8%, 6.1%, and 6.1% of participant preferences, respectively. Conversely,
as depicted in Figure 5b, 30.3% of participants identified Radare2’s decompiled code as the least
comprehensible, while very few participants (1.5%) indicated that Hex-Rays’ decompiled code was
the least comprehensive.

Dewolf Survey Results. While the alignment of R2Iwith the preferences of the participants of our
choice is noteworthy, the results may vary with different participant groups. Recent work [Enders
et al. 2023] introduces another decompiler (Dewolf) aimed at enhancing code readability. The
authors evaluated the readability of Dewolf’s decompiled code compared to Hex-Rays and Ghidra
through a user survey involving 53 participants. Thus, we applied R2I to the same decompiled code
from the survey, and compared the results with the prior survey findings. Figure 6a presents the R2I
scores with the Dewolf decompiler achieving the highest score (0.68), followed by Hex-Rays (0.54),
and Ghidra (0.18). These results align closely with the survey findings, where 83% of participants
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(a) R2I comparison
using the source
from Dewolf

(b) R2I comparison
between different
Hex-Rays versions (c) Correlations between our pre-defined features

Fig. 6. To show the practicality of R2I, (a) we apply R2I to the source provided by Dewolf [Enders 2021] that
proposes a readability-enhancing decompiler. The R2I metric of Dewolf shows a be�er index than that of
Hex-Rays [Hex-Rays 2023b], reflecting the improving efforts on decompiled code. Similarly, (b) we compute
R2I to see the enhancements across different Hex-Rays versions, demonstrating that the higher version
produces be�er decompiled code. Meanwhile, (c) we investigate the correlations between the features with a
heatmap, revealing positive relationships of several features (e.g., the line of code (F17) and the number of
conditions (F28)). Any features producing the correlations with p-values under 0.01 have been eliminated.

favored Dewolf’s decompiled code as the most comprehensible, while 13% selected Hex-Rays and
4% chose Ghidra. This demonstrates that R2I aligns with other surveys as well.

Summary 1: R2I’s practicality is evident, as its best and worst scores align closely with
users’ preferences. The R2I scores closely correspond to the second to fifth users’ preferences.
The slight variance in rankings between Binary Ninja and Ghidra is negligible, given the
R2I metric’s indication of nearly identical levels of readability for both decompilers.

6.2 RQ2: Effectiveness of R2I

We now assess the effectiveness of R2I metric through two different applications; 1 different
versions of the same decompiler, and 2 decompiled code from obfuscated binaries.

6.2.1 R2I with Evolving Decompilers. Decompilers, including Hex-Rays and Binary Ninja, keep
advancing code readability through updates. To assess the effectiveness of R2I metrics in capturing
these improvements, we select three versions of Hex-Rays: v6.8 (initial x64 decompiled code with
limited readability improvements), v7.2 (introduction of microcode intermediate language), and
v8.3 (the latest version at the time of writing).

Results. Figure 6b illustrate the average R2I across all binaries within our dataset for three different
decompiler versions. Note that the R2I consistently increases as the decompiler version advances.
Hex-Rays v8.3, the latest version, achieves the highest readability with a median R2I of 0.698,
followed by Hex-Rays v7.2 at 0.595, and Hex-Rays v6.8 at 0.386. Moreover, the score gap between

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 18. Publication date: July 2024.



R2I: A Relative Readability Metric for Decompiled Code 18:15

Fig. 7. R2I CDF comparisons from the (non-)obfuscated binaries (e.g., whoami from coreutils). R2I shows a
clear distinction between a non-obfuscated binary (i.e., None) and obfuscation-technique-applied binaries (e.g.,
Bcf: bogus control flow, Flat: control flow fla�ening, Sub: instruction substitution). Note that the decompiled
code readability with all obfuscation techniques ranks the lowest with R2I.

Hex-Rays v6.8 and v7.2 is relatively more significant than v7.2 and v8.3, indicating more substantial
readability improvements from v6.8 to v7.2.

Summary 2: R2I effectively reflects improvements in decompiler versions, evidenced by
higher scores in the latest versions and highlighting the differences between versions.

6.2.2 R2I with Obfuscated Binaries. An obfuscation technique [Junod et al. 2017] typically degrades
code readability. To demonstrate the applicability of R2I, we apply various obfuscated techniques
to binaries to see how R2I reflects the degree of obfuscation. We examine the decompiled code
from each binary with no obfuscation (none) and those with different obfuscation techniques,
including bogus control flow (bcf), control flow flattening (flat), and instruction substitutions
(sub). Our evaluation comprises Hex-Rays and Radare2, known for producing the most and least
readable decompiled code according to the R2Imetric, respectively. Additionally, we include Ghidra,
recognized for generating the most readable code among open-source decompilers. Unlike prior
evaluations, we use non-stripped binaries because obfuscations often rearrange function locations,
making it infeasible to identify identical functions across different binaries. It is noteworthy to
mention that R2I represents relative gaps between obfuscation techniques, rather than between
decompilers.

Results. Figure 7 shows that a binary obfuscation tends to lower R2I, highlighting the R2Imetric’s
ability to reflect different obfuscation techniques. We confirm that R2I significantly drops when all
obfuscation techniques are applied compared to their non-obfuscated counterparts. Decompiled
code with bcf and flat obfuscations results in a similar R2I. Interestingly, we sometimes see minor
differences or no difference in R2I between non-obfuscated code and the one with a sub-obfuscation,
hypothesizing that the impact of instruction substitutions limits the readability of decompiled code.
Notably, we observe a few instances where binaries with all obfuscations have higher R2I than
those not. Our in-depth investigation shows that a combined obfuscation technique sometimes
complicates the whole function but a few simple ones (e.g., control flow flattening), bringing about
generating a simplified function while rendering others exceptionally challenging to understand.

Summary 3: The R2I metric adequately reflects obfuscation techniques applied to a binary,
maintaining a high index for non-obfuscated code while a low index for obfuscated code.
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Table 5. Selective (weighted) features that affect R2I for the function at 0x401b20 from the hostid binary in
our corpus. Figure 8a contains the source and the decompiled outputs. The RetDec’s switch-case gains a
relatively high score (e.g., 0.0097) based on one of the user-preference features (e.g., F11-switch). However,
other features like inline assembly (F5) and the number of conditions (F28), drop the overall R2I. Meanwhile,
line of code (F17), the lower number of conditions (F28) and assignments (F30) in Hex-Rays than others
benefit overall readability, leading the highest R2I of 0.7055.

Decompiler F4 F5 F10 F11-switch F11-if F15 F17 F18 F21 F28 F30 R2I

Hex-Rays 0.0582 0.0582 0.0582 0.0000 0.0129 0.0129 0.0388 0.0582 0.0582 0.0291 0.0582 0.7055

Binary Ninja 0.0582 0.0582 0.0029 0.0000 0.0129 0.0129 0.0017 0.0582 0.0582 0.0194 0.0044 0.5368
Ghidra 0.0582 0.0582 0.0041 0.0000 0.0129 0.0129 0.0013 0.0019 0.0582 0.0194 0.0044 0.5192
RetDec 0.0582 0.0064 0.0116 0.0097 0.0194 0.0388 0.0019 0.0582 0.0582 0.0145 0.0116 0.5099
Angr 0.0582 0.0582 0.0027 0.0000 0.0129 0.0194 0.0010 0.0582 0.0582 0.0194 0.0041 0.4370
Radare2 0.0145 0.0582 0.0027 0.0000 0.0129 0.0388 0.0008 0.0582 0.0291 0.0582 0.0016 0.4332

6.3 RQ3: Correlations for Features and R2I

This section explores the correlations between features and between R2I and the features.

R2I and Features. To identify the features that significantly influence the R2I metric, we conduct
a Pearson correlation test with the initial hypothesis of no correlation between each feature and R2I
(Figure 5a). The test results unveil that the following features exhibit the most significant negative
correlation with R2I, consequently hurting code readability (i.e., rejecting the hypothesis with a
low p-value of ? < 0.01 or 99% confidence level):

• Number of tokens (F27; A = −0.6993, ? < 10−100)
• Line of code (F17; A = −0.5171, ? < 10−100)
• Number of assignments (F30; A = −0.5430, ? < 10−100)
• Number of operators (F2; A = −0.5103, ? < 10−100)
• Number of references/dereferences (F8; A = −0.4453, ? < 10−100)

Correlations between Features. Subsequently, we conduct additional Pearson correlation tests
to assess the relationships between R2I features. The outcomes of this test indicate that while most
features lack definitive relevance, a subset of features exhibits distinct positive correlations, as
depicted in Figure 6c. Notably, we observe a statistically significant positive correlation between
the features related to the number of lines of code (F17) and the following features:

• Number of tokens (F27; A = 0.8736, ? = 2.89−19)
• Number of assignments (F30; A = 0.8917, ? = 3.80−26)
• Number of conditions (F28; A = 0.8839, ? = 3.49−24)

This implies that an increase in the number of tokens, conditions, and assignments is associated
with longer lines of code. It is worth noting that the remaining features do not exhibit significant
positive or negative correlations with each other (i.e., independent features).

Summary 4: We identify a strong negative correlation between R2I and certain features,
including code size (F17, F27) and code complexity (F2, F8, F30), which impair code read-
ability. Additionally, we observe the (statistically meaningful) mutual feature correlations
only between the size of the code and three features F17, F28, and F30.

7 CASE STUDY

In this section, to gain deeper insights into our metrics, we delve into R2I with the source code
in Figure 8a and the outputs of three decompilers. In particular, we look into how R2I reflects
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1 void parse_long_options (int argc, /* omitted */,void

(*usage_func) (int), ...)↩→
2 {
»
8 if (argc == 2 && (c = getopt_long (argc, argv, "+",

long_options, NULL)) != -1)↩→
9 {
10 switch (c)
11 {
12 case 'h':
13 (*usage_func) (EXIT_SUCCESS);
14 break;
15 case 'v':
16 {
17 va_list authors;
18 va_start (authors, usage_func);
19 version_etc_va (stdout, command_name, package,

version, authors);↩→
20 exit (0);
21 }
22 default:
23 break;
24 }
25 }
»
29 } (a) Source code

1 void sub_401B20(__int64 a1, /* omitted */, void

(__fastcall *a6)(_QWORD), ...)↩→
2 {
3 int v6; // ebx
4 int v11; // eax
5 gcc_va_list va;
»
9 if ( (_DWORD)a1 == 2 )
10 {
11 v11 = sub_404DF0(a1, a2, "+", &off_405A40, 0LL);
12 if ( v11 != -1 )
13 {
14 if ( v11 == 104 )
15 {
16 a6(0LL);
17 }
18 else if ( v11 == 118 )
19 {
20 va_start(va, a6);
21 sub_403C70(stdout, a3, a4, a5, va);
22 exit(0);
23 }
24 }
25 }
»
28 }

(b) Hex-Rays

1 int64_t function_401b20(int64_t a1, int64_t a2, char *

a3, char * a4, int64_t a5, int64_t a6) {↩→
»
4 if ((char)v1 != 0) {
»
12 __asm_movaps(v2);
13 __asm_movaps(v2);
14 __asm_movaps(v2);
15 }
»
18 if ((int32_t)a1 != 2) {
19 //0x401b7f
20 g27 = v3;
21 g28 = 0;
22 int64_t result; // 0x401b20
23 return result;
24 }
25 int64_t result2 = function_404df0(a1, a2, &g3,

(int64_t *)&g4, 0, a6); // 0x401bb9↩→
26 int32_t v4 = result2; // 0x401bbe
27 switch (v4) {
28 default: {
29 // 0x401bc8
30 if (v4 == 118) {
31 int64_t v5 = 48; // bp-240, 0x401bea
32 function_403c70((int64_t)g30, (int64_t)a3,

(int64_t)a4, a5, &v5, a6);↩→
33 exit(0);
34 // UNREACHABLE
35 }
36 }
37 case -1: {
38 }
39 case 104: {
40 //0x401b7f
41 g27 = v3;
42 g28 = 0;
43 return result2;
44 }
45 }
46 } (c) RetDec

1 uint64_t fcn_00401b20 (int64_t arg_100h, /* omitted */,

int64_t arg9) {↩→
2 int64_t var_8h;
»
14 int64_t var_c0h;
15 rdi = arg1;
»
25 if (al != 0) {
26 *((rsp + 0x50)) = xmm0;
»
33 *((rsp + 0xc0)) = xmm7;
34 }
»
37 while (eax == 0xffffffff) {
38 label_0:
»
45 ecx = 0x405a40;
46 edx = 0x405a18;
47 r14 = r9;
48 eax = fcn_00404df0 ();
49 }
50 if (eax == 0x68) {
51 goto label_1;
52 }
53 if (eax != 0x76) {
54 goto label_0;
55 }
56 rcx = r13;
57 rdx = r12;
58 rsi = rbp;
59 r8 = rsp + 8;
60 rax = rsp + 0x100;
» *((rsp + 8)) = 0x30;
66
67 fcn_00403c70 (*(obj.stdout));
68 exit (0);
69 label_1:
70 edi = 0;
71 void (*r14)() ();
72 goto label_0;
73 } (d) Radare2

Fig. 8. (a) Source code of the function parse_long_options and three decompiled code snippets generated by
(b) Hex-Rays, (c) RetDec, and (d) Radare2. The representations of conditional statements (e.g., if, switch-case
in grey) vary depending on each decompiler. The R2I metrics are (b) 0.7055, (c) 0.5099, and (d) 0.4332,
respectively. Note that part of the code has been omi�ed for brevity.

code readability with actual decompiled codes. Table 5 is in the process of calculating our metric,
where each entry represents the weighted value of a feature for the parse_long_options function
from the hostid binary in our corpus. Hex-Rays has the highest R2I of 0.7055, while Radare2 has
the lowest R2I of 0.4332. Binary Ninja, Ghidra, and RetDec have R2I of 0.5368, 0.5192, and 0.5099,
respectively.
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Comparison between Decompiled Outputs. The original function (Figure 8a) takes a variable
number of parameters, and in its body, there is a single switch-case statement within an if
condition. In Figure 8b, Hex-Rays generates nested if statements (F15) rather than the switch
statement (F11-switch). The overall concise code with relatively fewer local variables (F10) and
assignments (F30) than other decompilers looks the most similar output to the original. Meanwhile,
RetDec (Figure 8c) produces a switch statement to express multiple conditional statements, similar
to the source. However, it becomes less readable than Hex-Rays because of the inline assembly (F5)
(i.e., representing the variable number of arguments) and lines of code (F17). Radare2 (Figure 8d)
generates the least readable code, which significantly differs from the original code. It embeds
goto statements (F4) that complicate the program’s control flow. Moreover, Radare2 generates
incomprehensible function calls (F21) such as (*r14)()() and numerous assignments that reuse
register-based-naming variables (e.g., rax and eax), significantly impairing code readability. Note
that R2I incorporates the above properties of each decompiler as features well, reflecting them to a
readability index.

8 THREATS TO VALIDITY

This section discusses the limitations of our work and future directions.

Decompilation Capability and Accuracy. Our code readability system predominately relies on
the capability of multiple decompilers’ decompilation, constraining that R2I could be computed
solely with produced outputs. For example, if there were a single decompiler to successfully
generate a (decompiled) code snippet while all others failed, it would be insufficient to calculate
R2I. Additionally, our evaluation assumes that the original source (i.e., ground truth) is unavailable,
hence the accuracy (i.e., absolute quality) of decompiled code is orthogonal to our approach.

Function Boundary Detection. Although discovering a function boundary by target decompilers
is another research problem [Alves-Foss and Song 2019; Andriesse et al. 2017; Bao et al. 2014;
Koo et al. 2023; Shin et al. 2015], it may limit the computation of R2I. A different capability of
recognizing a function may give rise to failing to compute R2I: e.g., our experiments show that less
than 10% functions have been identified for all six decompilers in our corpus.

Semi-automation for Syntax Correction. Recall that the features are extracted atop an AST
while (C-like) decompiled code sometimes may not obey a programming language grammar. We
empirically repair such an erroneous syntax problem by generating a regular-expression-based
pattern and inserting a fake header, however, such semi-automated fixes still hardly cover every
decompiler-producing output. To address this issue, we remain relaxing AST generation by patching
pycparser [Eliben 2023] as part of our future work.

Semantic Features. The R2I metric focuses solely on syntactic features from ASTs and does not
incorporate semantic code improvements, like meaningful constants. For instance, the recent efforts
to enhance readability from Hex-Rays include a fruitful constant; e.g., operation == WriteKey
instead of operation == 2 where “WriteKey” conveys better contextual meaning. To account for
such improvements, we plan to explore semantic code analysis in our future work.

Representativeness of Survey Participants. The user survey results with 22 participants may
reflect their preferences in a limited context or could differ with a different group of participants.
Hence, the R2I system has been implemented with adjustable feature weights. As part of our future
work, we plan to conduct a large-scale user survey to assess R2I within the decompiler community.

Decompiler-specific Common ASTs. It is possible for a decompiler to facilitate the creation
of a decompiler-specific AST, distinct from a C-based AST. For instance, Hex-Rays offers a plu-
gin [Bachaalany 2007] that can represent a decompiled function as a proprietary AST. One potential
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avenue for future development could involve establishing a standardized, common AST format
that is interoperable with various decompilers.

9 RELATED WORK

This section outlines three related areas to our work: source code readability models, readability-
affecting factors, and decompiler-enhancing efforts.

Source Code ReadabilityModels. Buse et al. [Buse andWeimer 2008] propose a readability model
(i.e., logistic regression) based on a set of syntactical features, which are obtained from subjective
ratings of the readability of code snippets by human annotators. Posnett et al. [Posnett et al. 2011]
improve (i.e., simplify) the model with Buse et al.’s mean scores and the Halstead [Halstead 1977]
metrics. Similarly, Dorn [Dorn 2012] introduces a general software readability model by additionally
including features that capture structural patterns, visual perception, natural language notions,
and alignments. On the other hand, Scalabrino et al. [Scalabrino et al. 2018, 2016] emphasize the
textual aspects of source code in identifiers and comments for measuring code readability. Recent
advances utilize deep neural networks to enhance code readability: e.g., Convolutional Neural
Networks (ConvNets) [Mi et al. 2018]. Later, Mi et al. [Mi et al. 2022, 2021] leverage a hybrid neural
network to extract features from visual, semantic, and structural aspects of source code. Meanwhile,
Fakhoury et al. [Fakhoury et al. 2019] claim the limitations of popular readability metrics like
Scalabrino et al. [Scalabrino et al. 2018] or Dorn [Dorn 2012] because it does not necessarily align
with actual code readability improvements. Note that our work focuses on the readability index for
(machine-produced) decompiled code.

Readability-affecting Factors. Tashtoush et al. [Tashtoush et al. 2013] investigate various
programming features that affect code readability, and evaluate it through a survey. In a similar
vein, Lee et al. [Lee et al. 2013] study the impact of programming style on code readability. Mannan
et al. [Mannan et al. 2018] conduct a research to understand the impact of code readability on the
overall quality of software. Meanwhile, Johnson et al. [Johnson et al. 2019] explore the importance
of code readability (e.g., nested loop) in software development. Alawad et al. [Alawad et al. 2019]
empirically reveal a negative correlation between readability and complexity. Oliveira et al. [Oliveira
et al. 2020] investigate various factors that impact code readability like programming constructs and
naming conventions. Beyer et al. [Beyer and Fararooy 2010] examine program dependency (deep
degree) to assess software quality. Pecorelli et al. [Pecorelli et al. 2019] investigate the influence of
code smells on improving code readability. Zhang et al. [Zhang et al. 2013] explore the impact of
six contextual factors on software metrics.

Decompiler-enhancing Efforts. To improve decompiled code readability, C-decompiler [Chen
et al. 2010] presents a practical decompiler that reduces redundant variables with data flow analysis
and register propagation. Similarly, Dream [Yakdan et al. 2015] attempts to reduce goto statements
that impair readability. The Byte-Equivalent Decompiler (BED) [Schulte et al. 2018] proposes a
new decompilation technique that persistently recombines and recompiles source excerpts from a
huge code database. Lately, Dewolf [Enders et al. 2023] introduces another decompiler that focuses
on the enhancement of the readability and comprehensibility of decompiled code. We thoroughly
study the previous readability-affecting factors and existing decompiler-improving efforts for code
readability, defining the features for R2I.

10 CONCLUSION

Decompilation serves as a basis for reverse engineers to aid in understanding the underlying
code semantics in a binary. Because of a myriad of decompilation applications such as security
vulnerability analysis, malware behavior identification, and infringement detection of software
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copyright, COTS decompilers like Hex-Rays have constantly been evolving for better-decompiled-
code readability. Although previous studies propose several metrics for evaluating the readability
of source code, little work has introduced that of decompiler-producing code. To the best of our
knowledge, this work first suggests the Relative Readability Index, dubbed R2I, a specialized metric
tailored to evaluate decompiled code in a relative context quantitatively. Our empirical evaluations,
conducted using six widely used decompilers and user surveys, demonstrate the versatility of the
R2I metric, not only representing the relative quality of decompiled code but also aligning with
human perception in our user survey.

11 DATA-AVAILABILITY STATEMENT

To foster further readability research for decompiled code, we disclose all of our evaluation
datasets to the public. We have opened the datasets on a preserved digital repository [Haeun et al.
2024a] and source code [Haeun et al. 2024b] to reproduce our work.
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