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Potential Risk in MLaaS

«  Data security risks
« Increasing the use of Machine Learning as a Service (MLaaS) platforms
«  Growing concerns about data security
—> Potential threats to the security of data samples
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Background

«  Membership Inference Attack (MIA)

«  Threatening the security of the data itself

« ldentifying the presence of a specific sample when training a target model
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Existing MIAS

«  Varying techniques depending on the adversary’s knowledge
«  White-box based MIAs
. Victim model’s architecture, parameters, and distribution of the dataset
—> Requires a strong assumption

« Black-box based MIAs
. Part of the knowledge of a white-box adversary
—> Different assumptions
—> Adopt standard (well-known) and (relatively simple)
benchmark datasets such as MNIST, CIFAR-10, and CIFAR-100
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Black-box based MIAS

«  Two types of Black-box MIAs
«  Classifier-based MIAs
«  Use prediction vectors from the victim (or shadow) model
«  Train a binary classifier attack model

«  Metric-based MIAs
«  Use prediction vectors from the victim (or shadow) model
«  Calculate metrics (e.g., correctness, loss, entropy)
«  Compare results with a predefined threshold
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Siamese-based MIA

-  Attacker's knowledge
1) Query access to the victim model
2) Architecture of the victim model
3) Distribution of the victim model dataset for preparing a shadow dataset
4) Non-member sample(s)
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Siamese-based MIA
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Research Questions

RQ1. How effective are existing black-box based MIAs and our approach (Siamese-based MIA)
on a previous benchmark dataset (e.g., CIFAR-10)?
RQ2. How well do the MIAs perform against a real-world dataset (e.g., KID34K)?

RQ3. How well the reconstructed images improve MIA performance on a real-world dataset?
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Experimental Settings & Results (RQ1)

« Dataset: CIFAR-10

«  Baselines: 6 metric-based MIAs and 3 classifier-based MIAs
«  Our approach: Siamese-based MIA

«  Evaluation metric: AUC

Attack Technique Base Approach AUC
MIA Evaluation (Threshold attack) [34] Metric-based (Loss) 0.52
MIA Evaluation (Threshold entropy attack) [34] Metric-based (Entropy) 0.51
LiRA [5] Metric-based (Loss) 0.58
Privacy Meter (Population metric attack) [39] Metric-based (Loss) 0.50
Privacy Meter (Shadow metric attack) [33,39]  Metric-based (Correctness) 0.50
Privacy Meter (Reference metric attack) [39] Metric-based (Loss) 0.50
MIA Evaluation (Logistic regression attack) [34] Classifier-based 0.51
SAMIA [40] Classifier-based 0.67
Confidence-based neural network attack [33| Classifier-based 0.64
Siamese-based MIA (Ours) Classifier-based 0.70
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Effectiveness of MIA against a Real-world Dataset

MIAagainst a target model on the real-world dataset
*  Images that contain sensitive information
«  High-resolution images (512x800 = 409.6K)

- KID34K (512x800) dataset: ID cards and drivers’ licenses
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Various Dataset Compositions for MIA Performance

«  User-based
@ D, (splits by individual user): A realistic assumption for checking the membership of a single person

© D, (randomly splits each dataset)
«  Label-based
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Experimental Settings & Results (RQ2)

 Dataset: KID34K

» Baselines: 2 classifier-based MIAs (selected from the best performance in RQ1)
« Evaluation metrics: F1, AUC
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Experimental Settings & Results (RQ2)

» Dataset: KID34K
« Baselines: 2 classifier-based MIAs (selected from the best performance in RQ1)
 Evaluation metrics: AUC
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Our Idea: Reconstructed Images

« Performance of MIA techniques degrades with excessive features

Dataset Resolution
CIFAR-10 32x32
KID34K 512 x 800

« MIA configuration and sample properties may affect the accuracy of membership inference

@ How can we improve MIA performance on a real-world dataset?
—> Reducing resolution meaningfully can improve MIA performance
—> Reconstructing images with an autoencoder
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Impact of Reconstructed Images on MIA Performance (RQ3)

« Images reconstructed by an autoencoder help in training a shadow model
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Summary of Our Findings

«  MIAresults can vary depending on
«  Number of features (dimension)
«  Dataset configuration (sample characteristics)
—> Leading to inconsistencies with other datasets

- Autoencoder-generated images enhance the success rate of MIAS
«  16% performance drop in shadow models by adopting an autoencoder

«  Defending against MIAs involves trade-offs between model performance and security
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Threats to Validity

«  Generalization

«  Limited applicability to diverse datasets (e.g., financial, healthcare)
« Scope

«  White-box MIAs’ results may vary
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Conclusion

«  Black-box MIAs may underperform on a real-world dataset (KID34K)
«  Proposing a Siamese-based MIA
Reducing features can empirically improve MIA performance
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