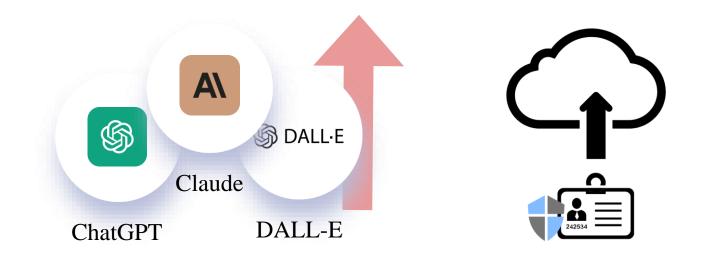
An Empirical Study of Black-box based Membership Inference Attacks on a Real-world Dataset

Yujeong Kwon, Simon S. Woo, and Hyungjoon Koo

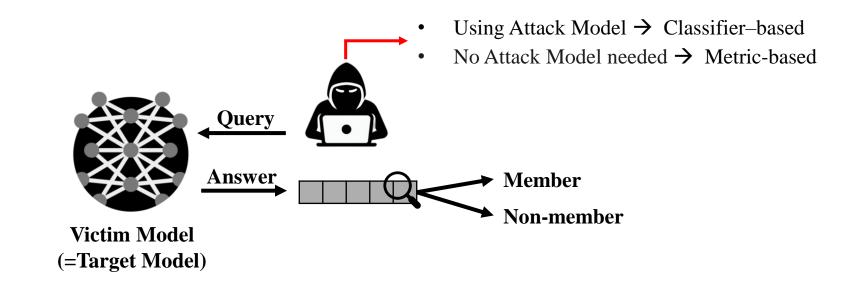
Montréal, Canada December 9-11, 2024

- Data security risks
 - Increasing the use of Machine Learning as a Service (MLaaS) platforms
 - Growing concerns about data security
 - \rightarrow Potential threats to the security of data samples



Background

- Membership Inference Attack (MIA)
 - Threatening the security of the data itself
 - Identifying the presence of a specific sample when training a target model



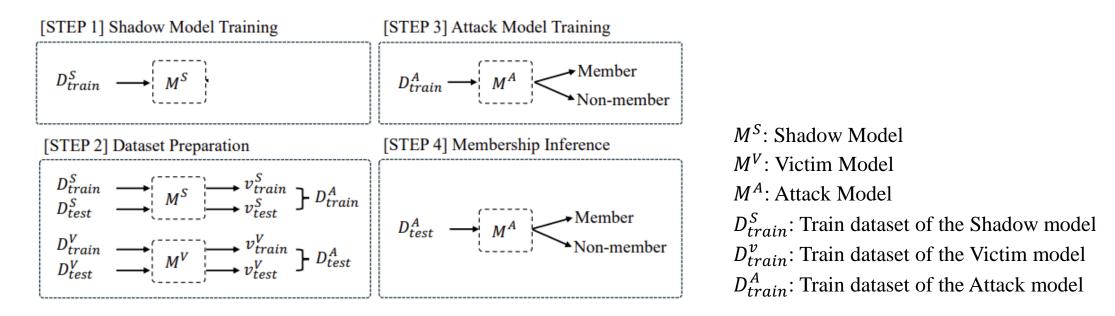
Existing MIAs

- Varying techniques depending on the adversary's knowledge
 - White-box based MIAs
 - : Victim model's architecture, parameters, and distribution of the dataset
 - \rightarrow Requires a strong assumption
 - Black-box based MIAs
 - : Part of the knowledge of a white-box adversary
 - \rightarrow Different assumptions
 - \rightarrow Adopt standard (well-known) and (relatively simple)

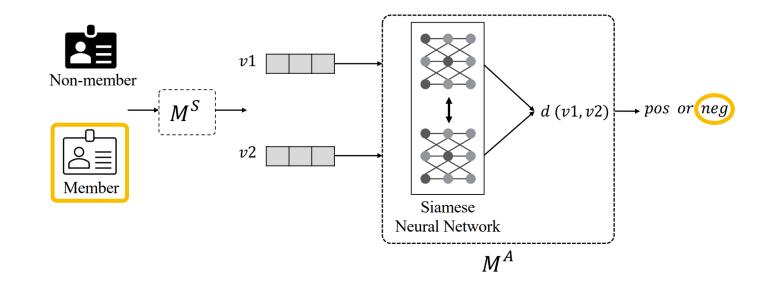
benchmark datasets such as MNIST, CIFAR-10, and CIFAR-100

- Two types of Black-box MIAs
 - Classifier-based MIAs
 - Use prediction vectors from the victim (or shadow) model
 - Train a binary classifier attack model
 - Metric-based MIAs
 - Use prediction vectors from the victim (or shadow) model
 - Calculate metrics (e.g., correctness, loss, entropy)
 - Compare results with a predefined threshold

- Attacker's knowledge
 - 1) Query access to the victim model
 - 2) Architecture of the victim model
 - 3) Distribution of the victim model dataset for preparing a shadow dataset
 - 4) Non-member sample(s)



Overall Workflow



Member – Member : *Positive* Non-member – Non-member : *Positive* Member – Non-member : Negative RQ1. How effective are existing black-box based MIAs and our approach (Siamese-based MIA)

on a previous benchmark dataset (e.g., CIFAR-10)?

RQ2. How well do the MIAs perform against a real-world dataset (e.g., KID34K)?

RQ3. How well the reconstructed images improve MIA performance on a real-world dataset?

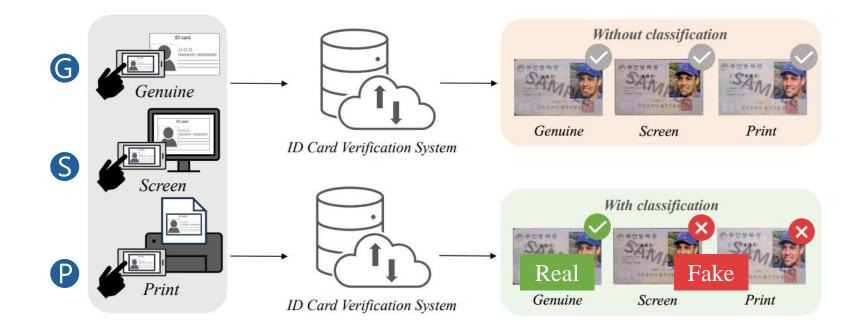
Experimental Settings & Results (RQ1)

- Dataset: CIFAR-10
- Baselines: 6 metric-based MIAs and 3 classifier-based MIAs
- Our approach: Siamese-based MIA
- Evaluation metric: AUC

Attack Technique	Base Approach	\mathbf{AUC}
MIA Evaluation (Threshold attack) [34]	Metric-based (Loss)	0.52
MIA Evaluation (Threshold entropy attack) [34]	Metric-based (Entropy)	0.51
LiRA [5]	Metric-based (Loss)	0.58
Privacy Meter (Population metric attack) [39]	Metric-based (Loss)	0.50
Privacy Meter (Shadow metric attack) [33,39]	Metric-based (Correctness)	0.50
Privacy Meter (Reference metric attack) [39]	Metric-based (Loss)	0.50
MIA Evaluation (Logistic regression attack) [34]	Classifier-based	0.51
SAMIA [40]	Classifier-based	0.67
Confidence-based neural network attack [33]	Classifier-based	0.64
Siamese-based MIA (Ours)	Classifier-based	0.70

Effectiveness of MIA against a Real-world Dataset

- MIA against a target model on the real-world dataset
 - Images that contain sensitive information
 - High-resolution images ($512 \times 800 \approx 409.6$ K)
- → KID34K (512x800) dataset: ID cards and drivers' licenses

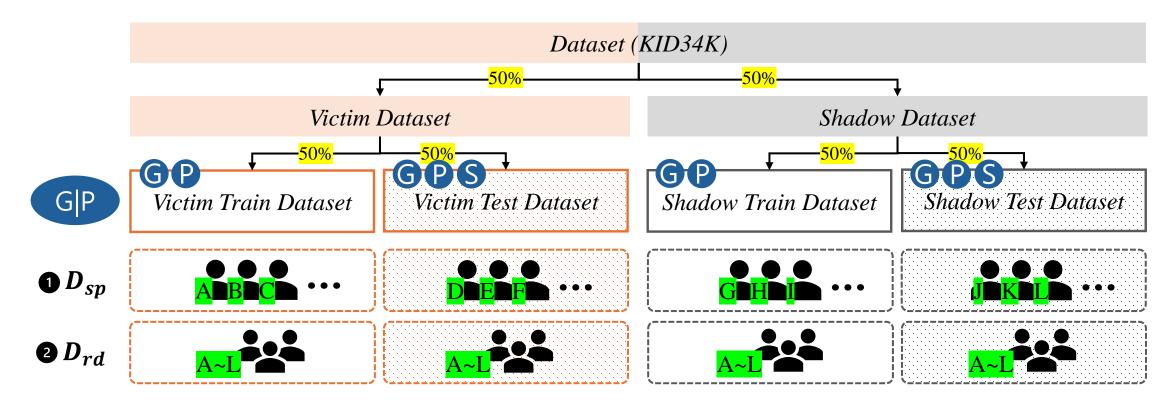


Various Dataset Compositions for MIA Performance

• User-based

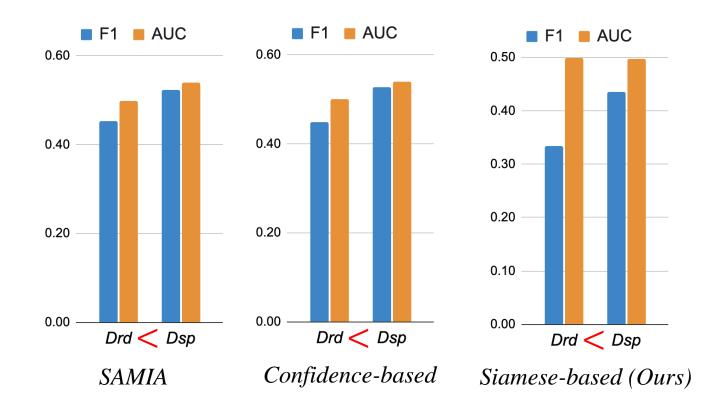
D_{sp} (splits by individual user): A realistic assumption for checking the membership of a single person
 D_{rd} (randomly splits each dataset)

- Label-based
 - G: Genuine, P: Print, S: Screen



Experimental Settings & Results (RQ2)

- Dataset: KID34K
- Baselines: 2 classifier-based MIAs (selected from the best performance in RQ1)
- Evaluation metrics: F1, AUC

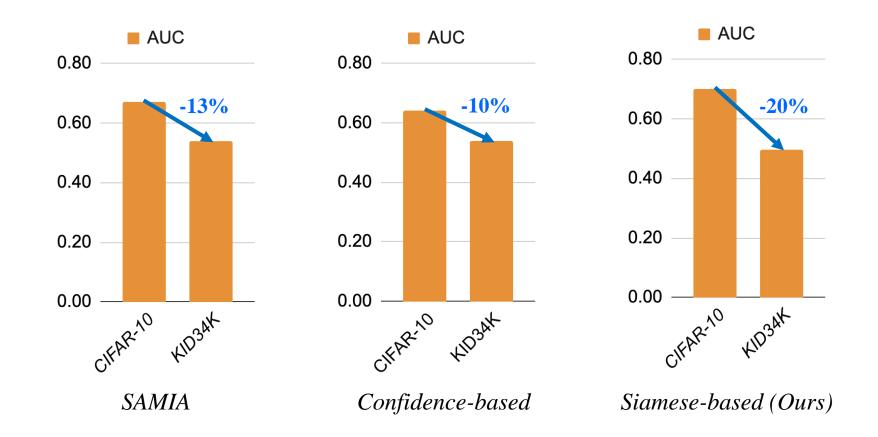


 $D_{rd} < D_{sp}$

- D_{rd} (randomly splits each dataset)
- D_{sp} (splits by individual user)

Experimental Settings & Results (RQ2)

- Dataset: KID34K
- Baselines: 2 classifier-based MIAs (selected from the best performance in RQ1)
- Evaluation metrics: AUC



Our Idea: Reconstructed Images

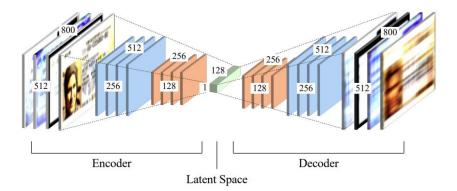
• Performance of MIA techniques degrades with excessive features

Dataset	Resolution	
CIFAR-10	32 x 32	
KID34K	512 x 800	

• MIA configuration and sample properties may affect the accuracy of membership inference

How can we improve MIA performance on a real-world dataset?

- \rightarrow Reducing resolution meaningfully can improve MIA performance
- \rightarrow Reconstructing images with an autoencoder



Impact of Reconstructed Images on MIA Performance (RQ3)

• Images reconstructed by an autoencoder help in training a shadow model

D _{train}	Genuine	Print	Screen
G/P	V	V	
G/S	V		V
All	V	V	V

Selection	D_{train}	Method	F1	AUC
D_{sp}	G P	SAMIA	0.56	0.62
D_{sp}	G S	SAMIA	0.53	0.53
D_{sp}	All	SAMIA	0.52	0.54
$\overline{D_{sp}}$	G P	Confidence-based	0.63	0.67
D_{sp}	G S	Confidence-based	0.54	0.54
D_{sp}	All	Confidence-based	0.53	0.54
$\overline{D_{sp}}$	G P	Siamese-based*	0.45	0.51
D_{sp}	G S	Siamese-based *	0.41	0.47
D_{sp}	All	Siamese-based*	0.44	0.50
		Original		

	Selection	D_{train}	Method	$\mathbf{F1}$	AUC
	D_{sp}	G P	SAMIA	0.64	0.66
	D_{sp}	G S	SAMIA	0.53	0.54
	D_{sp}	All	SAMIA	0.53	0.53
•	D_{sp}	G P	Confidence-based	0.62	0.66
	D_{sp}	G S	Confidence-based	0.54	0.54
	D_{sp}	All	Confidence-based	0.53	0.53
	D_{sp}	G P	Siamese-based*	0.51	0.52
	D_{sp}	G S	Siamese-based $*$	0.42	0.48
	D_{sp}	All	Siamese-based*	0.45	0.49

Reconstructed

Summary of Our Findings

- MIA results can vary depending on
 - Number of features (dimension)
 - Dataset configuration (sample characteristics)
 → Leading to inconsistencies with other datasets
- Autoencoder-generated images enhance the success rate of MIAs
 - 16% performance drop in shadow models by adopting an autoencoder
- Defending against MIAs involves trade-offs between model performance and security

Threats to Validity

- Generalization
 - Limited applicability to diverse datasets (e.g., financial, healthcare)
- Scope
 - White-box MIAs' results may vary

Conclusion

- Black-box MIAs may underperform on a real-world dataset (KID34K)
- Proposing a Siamese-based MIA
- Reducing features can empirically improve MIA performance

Thank you

