
Practical Binary Code Similarity 
Detection with BERT-based

Transferable Similarity Learning

Sunwoo Ahn
Department of Electrical 

and Computer Engineering

Seoul National University

Seoul, Korea

Seonggwan Ahn
Department of Electrical 

and Computer Engineering

Seoul National University

Seoul, Korea

Yunheung Paek
Department of Electrical and 

Computer Engineering

Seoul National University

Seoul, Korea

Hyungjoon Koo
Department of Computer 
Science and Engineering

Sungkyunkwan University

Suwon, Korea



Binary Code Similarity Detection (BCSD)

• Problem Definition

• Papers → since 1999 [HAQ et al., 2021]

• Usage
• Code clone detection
• Malware detection
• Malware family classification
• Known vulnerability discovery
• Code patching verification

machine code 
snippet A

machine code 
snippet B

Proximity?



Challenges

• Elimination/transformation of semantic information
• e.g., variable name, structure, type, class hierarchy

• Binary variants
• compiler configuration, architecture, obfuscation, etc.

• Halting problem
• It is undecidable to prove

that two arbitrary programs are functionally equivalent



Scope

• Comparison type
• One-to-one

• One-to-many

• Many-to-many

• Comparison target(binary)
• Compiler

• Compiler options/versions/opt lv

• Architecture

• Obfuscation

• Comparison granularity
• Basic block

• Function

• Binary

• Comparison techniques
• static/dynamic/symbolic approaches

• Hashing, indexing, embedding

• Cosine/L1/L2 distance



Scope

• Comparison type
• One-to-one

• One-to-many

• Many-to-many

• Comparison target(binary)
• Compiler

• Compiler options/versions/opt lv

• Architecture – x86_64

• Obfuscation

• Comparison granularity
• Basic block

• Function

• Binary

• Comparison techniques
• static/dynamic/symbolic approaches

• Hashing, indexing, embedding

• Cosine/L1/L2 distance
• Weighted distance



Existing Works

• Recent works employ Siamese network
Model Distance function Loss function Architecture

Gemini Cosine distance Contrastive loss GNN, Siamese NN

InnerEye Cosine distance Contrastive loss word2vec, LSTM

Asm2Vec Cosine distance Log probability PV-DM

PalmTree Cosine distance Contrastive loss BERT, GNN, Siamese NN

DeepSemantic None Cross entropy BERT, Softmax classifier



Existing Works

• Recent works employ Siamese network

• Scalar value → oversimplification

Model Distance function Loss function Architecture

Gemini Cosine distance Contrastive loss GNN, Siamese NN

InnerEye Cosine distance Contrastive loss word2vec, LSTM

Asm2Vec Cosine distance Log probability PV-DM

PalmTree Cosine distance Contrastive loss BERT, GNN, Siamese NN

DeepSemantic None Cross entropy BERT, Softmax classifier



Problem

• Prediction scenario in existing works

Database

Function 
embeddings of 

interest

BCSD Model

function1

function2

function3

function_n

…

Query function

①

②

Similarity 
score

How can we find a 
suspicious function?

Usually, vulnerable function



Problem

• Our newly proposed realistic scenario

Database

Function 
embeddings of 

interest

BCSD Model

function1

function2

function3

function_n

…

Query function

①

②

Similarity 
score

Query 
Binary

function1

function2

function3

function_m

…

Query function function_d

Known pair

function_d

Unknown pair

function_q

Model need to be 
more robust against 
unknown functions!

Existing models →
many false positives



Problem

• Recent works employ Siamese network

• Two elements affects performance [Marcelli et al., 2022]
→ We explore some options

Model Distance function Loss function Architecture

Gemini Cosine distance Contrastive loss GNN, Siamese NN

InnerEye Cosine distance Contrastive loss word2vec, LSTM

Asm2Vec Cosine distance Log probability PV-DM

PalmTree Cosine distance Contrastive loss BERT, GNN, Siamese NN

DeepSemantic None Cross entropy BERT, Softmax classifier



Solutions

• Pretraining BERT
• learns relationship btw instructions

• understands assembly language

• Siamese network learning
weighted distance with binary cross entropy
• Koch et al. proposed it

• More robust against unseen data



BinShot

• Preprocessor
• Disassemble binaries
• Instruction normalization

• Prevents OOV problem

• Pretrainer
• MLM task → same with original BERT
• NSP task → exclude from original BERT

• Function invocation rather than locations

• Finetuner
• Downstream task = BCSD
• Learn weighted distance

with Siamese network

• Predictor
• For efficient inference in our newly 

proposed realistic scenario

You can find more details in our paper!



Experimental Setup

• Dataset
• compiled with 2 compiler (gcc, clang) & 4 optimization (O0-O3)
• Projects

• GNU utilities – binutils, coreutils, diffutils, findutils
• SPEC CPU – 2006, 2017
• Real-world programs

• BusyBox, Libgmp, ImageMagick, Libcurl, LibTomCrypt, OpenSSL, SQLite, zlib, PuTTYgen, Nginx, vsftpd

• Baseline models

Model Distance function Loss function Architecture

Gemini Cosine distance Contrastive loss GNN, Siamese NN

Asm2Vec Cosine distance Log probability PV-DM

PalmTree Cosine distance Contrastive loss BERT, GNN, Siamese NN

DeepSemantic None Cross entropy BERT, Softmax classifier

BinShot-CTR L2 nrom Contrastive loss BERT, Siamese NN

BinShot Weighted squared error Binary cross entropy BERT, Siamese NN



Evaluation - effectiveness

• Evaluate whole dataset
• #positive : #negative = 1:1

• t-SNE visualization



Evaluation - transferability

• Trained with SPEC 2006

• Trained with SPEC 2017

• Note: GNU utilities → a few sharing functions w/ static library



Evaluation - vulnerable function detection

• Realistic scenario setup
• Database contains

vulnerable function embeddings
• 4 binary variants (gcc O0-3)

• Query binary is stripped
• 4 binary varinats (clang O0-3)

• Goal: find vulnerable function in query binary

Database

Function 
embeddings of 

interest

BCSD Model

function1

function2

function3

function_n

…

Query function

①

②

Query 
Binary

function1

function2

function3

function_m

…



Evaluation – runtime efficiency

• Runtime efficiency
• Exp1 - Each function pair

• Exp2 - 82300 function pairs (100 in database, 823 in query binary) with our predictor

Model Gemini Asm2Vec PalmTree DeepSemantic BinShot-CTR BinShot

Exp1 (ms) 0.10 81.94 1.33 1.34 1.30 1.32

Exp2 (s) 1.16 6,734.66 29.03 1.51 1.45 1.54



Discussions & Limitations

• Mangled Names

• Code obfuscation and other code constructs
• See scope slide (target binary)

• Function inlining

• Rarely appeared instructions



Summary

• Superiority of BinShot
• effectiveness, practicality (transferability & runtime), visualization

• Learning weighted distance & pretraining
improve robustness against unseen function pair

• The other models but ours shows poor performance
in our newly proposed realistic scenario

• Open source project: https://github.com/asw0316/binshot



Thanks!


	슬라이드 1: Practical Binary Code Similarity Detection with BERT-based Transferable Similarity Learning
	슬라이드 2: Binary Code Similarity Detection (BCSD)
	슬라이드 3: Challenges
	슬라이드 4: Scope
	슬라이드 5: Scope
	슬라이드 6: Existing Works
	슬라이드 7: Existing Works
	슬라이드 8: Problem
	슬라이드 9: Problem
	슬라이드 10: Problem
	슬라이드 11: Solutions
	슬라이드 12: BinShot
	슬라이드 13: Experimental Setup
	슬라이드 14: Evaluation - effectiveness
	슬라이드 15: Evaluation - transferability
	슬라이드 16: Evaluation - vulnerable function detection
	슬라이드 17: Evaluation – runtime efficiency
	슬라이드 18: Discussions & Limitations
	슬라이드 19: Summary
	슬라이드 20: Thanks!

