Practical Binary Code Similarity Detection with BERT-based Transferable Similarity Learning

Sunwoo Ahn

Department of Electrical and Computer Engineering Seoul National University Seoul, Korea

Seonggwan Ahn

Department of Electrical and Computer Engineering Seoul National University Seoul, Korea Hyungjoon Koo Department of Computer Science and Engineering Sungkyunkwan University Suwon, Korea

Yunheung Paek

Department of Electrical and Computer Engineering Seoul National University

Seoul, Korea

Binary Code Similarity Detection (BCSD)

• Problem Definition

- Papers → since 1999 [HAQ et al., 2021]
- Usage
 - Code clone detection
 - Malware detection
 - Malware family classification
 - Known vulnerability discovery
 - Code patching verification

Challenges

- Elimination/transformation of semantic information
 - e.g., variable name, structure, type, class hierarchy
- Binary variants
 - compiler configuration, architecture, obfuscation, etc.
- Halting problem
 - It is undecidable to prove that two arbitrary programs are functionally equivalent

Scope

- Comparison type
 - One-to-one
 - One-to-many
 - Many-to-many
- Comparison target(binary)
 - Compiler
 - Compiler options/versions/opt lv
 - Architecture
 - Obfuscation

- Comparison granularity
 - Basic block
 - Function
 - Binary
- Comparison techniques
 - static/dynamic/symbolic approaches
 - Hashing, indexing, embedding
 - Cosine/L1/L2 distance

Scope

- Comparison type
 - One-to-one
 - One-to-many
 - Many-to-many
- Comparison target(binary)
 - Compiler
 - Compiler options/versions/opt lv
 - Architecture x86_64
 - Obfuscation

- Comparison granularity
 - Basic block
 - Function
 - Binary
- Comparison techniques
 - static/dynamic/symbolic approaches
 - Hashing, indexing, embedding
 - Cosine/L1/L2 distance
 - Weighted distance

Existing Works

• Recent works employ Siamese network

Model	Distance function	Loss function	Architecture
Gemini	Cosine distance	Contrastive loss	GNN, Siamese NN
InnerEye	Cosine distance	Contrastive loss	word2vec, LSTM
Asm2Vec	Cosine distance	Log probability	PV-DM
PalmTree	Cosine distance	Contrastive loss	BERT, GNN, Siamese NN
DeepSemantic	None	Cross entropy	BERT, Softmax classifier

Existing Works

• Recent works employ Siamese network

Model	Distance function	Loss function	Architecture
Gemini	Cosine distance	Contrastive loss	GNN, Siamese NN
InnerEye	Cosine distance	Contrastive loss	word2vec, LSTM
Asm2Vec	Cosine distance	Log probability	PV-DM
PalmTree	Cosine distance	Contrastive loss	BERT, GNN, Siamese NN
DeepSemantic	None	Cross entropy	BERT, Softmax classifier

• Scalar value \rightarrow oversimplification

 $L_{c}(W, Y, X_{i}, X_{j}) = Y \frac{1}{2} (F_{W})^{2} + (1 - Y) \frac{1}{2} (max(0, 1 - F_{W}))^{2}$

Problem

• Prediction scenario in existing works

Problem

• Our newly proposed realistic scenario

Problem

• Recent works employ Siamese network

Model	Distance function	Loss function	Architecture
Gemini	Cosine distance	Contrastive loss	GNN, Siamese NN
InnerEye	Cosine distance	Contrastive loss	word2vec, LSTM
Asm2Vec	Cosine distance	Log probability	PV-DM
PalmTree	Cosine distance	Contrastive loss	BERT, GNN, Siamese NN
DeepSemantic	None	Cross entropy	BERT, Softmax classifier

Two elements affects performance [Marcelli et al., 2022]
→ We explore some options

Solutions

- Pretraining BERT
 - learns relationship btw instructions
 - understands assembly language

• Siamese network learning weighted distance with binary cross entropy

- Koch et al. proposed it
- More robust against unseen data

BinShot

- Preprocessor
 - Disassemble binaries
 - Instruction normalization •
 - Prevents OOV problem
- Pretrainer
 - MLM task \rightarrow same with original BERT
 - NSP task \rightarrow exclude from original BERT
 - Function invocation rather than locations

③ Building a Special Model for Code Similarity ④ Detecting Similarity

- Finetuner
 - Downstream task = BCSD
 - Learn weighted distance with Siamese network
- Predictor
 - For efficient inference in our newly proposed realistic scenario •

You can find more details in our paper!

Experimental Setup

- Dataset
 - compiled with 2 compiler (gcc, clang) & 4 optimization (O0-O3)
 - Projects
 - GNU utilities binutils, coreutils, diffutils, findutils
 - SPEC CPU 2006, 2017
 - Real-world programs
 - BusyBox, Libgmp, ImageMagick, Libcurl, LibTomCrypt, OpenSSL, SQLite, zlib, PuTTYgen, Nginx, vsftpd

• Baseline models

Model	Distance function	Loss function	Architecture
Gemini	Cosine distance	Contrastive loss	GNN, Siamese NN
Asm2Vec	Cosine distance	Log probability	PV-DM
PalmTree	Cosine distance	Contrastive loss	BERT, GNN, Siamese NN
DeepSemantic	None	Cross entropy	BERT, Softmax classifier
BinShot-CTR	L2 nrom	Contrastive loss	BERT, Siamese NN
BinShot	Weighted squared error	Binary cross entropy	BERT, Siamese NN

Evaluation - effectiveness

- Evaluate whole dataset
 - #positive : #negative = 1:1

• t-SNE visualization

Evaluation - transferability

• Trained with SPEC 2006

• Trained with SPEC 2017

Evaluation - vulnerable function detection

- Realistic scenario setup
 - Database contains vulnerable function embeddings
 - 4 binary variants (gcc O0-3)
 - Query binary is stripped
 - 4 binary varinats (clang O0-3)
 - Goal: find vulnerable function in query binary

		Gemini		Asm2Vec		PalmTree		DeepSemantic		BinShot-CTR		BinShot		
Program	CVE	Vulnerable function	00-03	A/R	00-03	A/R	00-03	A/R	00-03	A/R	00-03	A/R	00-03	A/R
2014 01/0 [12]	tls1_process_heartbeat	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$		1111		1111	√ X√ X		1111		$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$			
OnenSSI	2014-0100 [15]	dtls1_process_heartbeat	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	✓ 0.0033/ ✓ 1.0000		1111	0.0140/		0 2656/	1111	0.0022/	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	0.0000/	
v1.0.1e [*] 2014-0221 [14] 2014-3508 [15] 2015-1791 [17]	2014-0221 [14]	dtls1_get_message_fragment	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$		1111	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{10000}}}}}}}}}$	1111	0.0140/	$\begin{array}{c c} & \checkmark \mathbf{X} \checkmark \mathbf{X} & 0.5050 \\ \hline 0000 & \checkmark \mathbf{X} \checkmark \mathbf{X} & 0.6000 \\ \hline \mathbf{\sqrt{\sqrt{X}}} & 0.6000 \end{array}$	0.3030/	1111	1.0000	VVV 1.000	1.0000
	2014-3508 [15]	OBJ_obj2txt	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$		√√√√ 1.0000	1.0000	1111	1.0000		0.0000	1111	1.0000	1111	1.0000
	<pre>ssl3_get_new_session_ticket</pre>	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$		1111		1111		X √ √ √		1111		$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$		
NTD		crypto_recv		0.0055/		0.1588/		0.0083/		0.4505/		0.0064/		0.7040/
v4.2.7p10 2014-9295 [16]	ctl_putdata	√√√ -	- 1.0000	$\sqrt{\sqrt{4}}$ - 0.15	1 0000	1.0000 $\sqrt{\sqrt{\sqrt{-1000}}}$	1.0000	$\sqrt[3]{} \sqrt[3]{} $	1 0000	<i>\\\</i> -	$\sqrt{\sqrt{\sqrt{-10004/}}}$	√√√ -	1 0000	
	configure	√ -√√	1.0000	√-√√	1.0000	√-√√	1.0000	$\checkmark - \checkmark \checkmark$	1.0000	√-√√	1.0000	√-√√	1.0000	
libav v0.8.3	2012-2776 [12]	decode_cell_data	<i>\</i>	0.0007/ 1.0000	<i>\\\\</i>	0.1215/ 1.0000	<i>\ \ \ \ \ \</i>	0.0065/ 1.0000	X √ X √	0.0003/ 0.5000	1111	0.0007/ 1.0000	<i>\ \ \ \ \</i>	0.9497/ 1.0000

Evaluation – runtime efficiency

- Runtime efficiency
 - Exp1 Each function pair
 - Exp2 82300 function pairs (100 in database, 823 in query binary) with our predictor

Model	Gemini	Asm2Vec	PalmTree	DeepSemantic	BinShot-CTR	BinShot
Exp1 (ms)	0.10	81.94	1.33	1.34	1.30	1.32
Exp2 (s)	1.16	6,734.66	29.03	1.51	1.45	1.54

Discussions & Limitations

- Mangled Names
- Code obfuscation and other code constructs
 - See scope slide (target binary)
- Function inlining
- Rarely appeared instructions

Summary

- Superiority of BinShot
 - effectiveness, practicality (transferability & runtime), visualization
- Learning weighted distance & pretraining improve robustness against unseen function pair
- The other models but ours shows poor performance in our newly proposed realistic scenario
- Open source project: https://github.com/asw0316/binshot

Thanks!