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ABSTRACT

Binary reverse engineering is crucial to gaining insights into the
inner workings of a stripped binary. Yet, it is challenging to read
the original semantics from a binary code snippet because of the
unavailability of high-level information in the source, such as func-
tion names, variable names, and types. Recent advancements in
deep learning show the possibility of recovering such vanished
information with a well-trained model from a pre-defined dataset.
Albeit a static model’s notable performance, it can hardly cope with
an ever-increasing data stream (e.g., compiled binaries) by nature.
The two viable approaches for ceaseless learning are retraining the
whole dataset from scratch and fine-tuning a pre-trained model;
however, retraining suffers from large computational overheads
and fine-tuning from performance degradation (i.e., catastrophic
forgetting). Lately, continual learning (CL) tackles the problem of
handling incremental data in security domains (e.g., network in-
trusion detection, malware detection) using reasonable resources
while maintaining performance in practice.

In this paper, we focus on how CL assists in the improvement of a
generativemodel that predicts a function symbol name from a series
of machine instructions. To this end, we introduce BinAdapter, a
system that can infer function names from an incremental dataset
without performance degradation from an original dataset by lever-
aging CL techniques. Our major finding shows that incremental
tokens in the source (i.e., machine instructions) or the target (i.e.,
function names) largely affect the overall performance of a CL-
enabled model. Accordingly, BinAdapter adopts three built-in
approaches: 1 inserting adapters in case of no incremental tokens
in both the source and target, 2 harnessing multilingual neural
machine translation (M-NMT) and fine-tuning the source embed-
dings with 1 in case of incremental tokens in the source, and 3
fine-tuning target embeddings with 2 in case of incremental to-
kens in both. To demonstrate the effectiveness of BinAdapter, we
evaluate the above three scenarios using incremental datasets with
or without a set of new tokens (e.g., unseen machine instructions
or function names), spanning across different architectures and
optimization levels. Our empirical results show that BinAdapter
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outperforms the state-of-the-art CL techniques for an F1 of up to
24.3% or a Rouge-l of 21.5% in performance.
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1 INTRODUCTION

A program is typically distributed in the form of a stripped exe-
cutable binary (i.e., removing useful information like debugging
symbols) after compilation. Binary reverse engineering (i.e., binary
reversing) becomes essential to gain insights into the inner work-
ings of the binary when one cannot access its source code. Binary
reversing offers valuable assistance not only in diagnosing and
resolving issues when encountering application bugs or crashes
but also in malware analysis. It allows security researchers to un-
derstand the behavior of malware, identify vulnerabilities, develop
effective countermeasures, and devise robust mitigation strategies.

However, understanding the functionality of an executable is
quite challenging even to experienced experts because the original
code semantics (e.g., function names, function parameters, variable
names, variable types, structures, class hierarchies) has disappeared
with numerous transformation processes by modern compilers. An-
other reason that makes a reversing task difficult is the dynamic
nature of binary code generation: e.g., a particular platform has its
own instruction set architecture and its specific intricacies; different
compilers and their versions, different optimization levels, different
compiler options, or their combination could generate a completely
different assembly code from an identical source. Furthermore, it
is common to deliberately employ obfuscation techniques such as
packing, anti-debugging, and anti-analysis mechanisms, for obscur-
ing the codes’ structure and logic.

Recent advancements in deep learning techniques have intro-
duced new possibilities for gaining insights into a binary’s opera-
tion, surpassing traditional approaches that solely rely on static, dy-
namic, or a combination of both analyses. In particular, partial recov-
ery of vanished information (e.g., function name [12, 29, 58, 59], vari-
able name [2, 9, 24, 52], decompiled code [43], variable type [9, 24])
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in a stripped binary may greatly enhance the comprehension of an
unknown binary’s behavior. In this work, we focus on one of such
efforts that predict a function name (i.e., function symbol name
as part of debugging information) [12, 17, 24, 29] from a given se-
quence of machine instructions. As with the previous techniques,
the inference of an original function symbol name from machine
instructions is analogous to a translation task from one language
to another in the field of natural language processing (NLP).

Despite noticeable performance using prior approaches [12, 17,
24, 29], a static model that is learned from the fixed volume of a
pre-collected dataset can hardly cope with an ever-incremental data
stream. By nature, the number of source code and the functions
within is unlimited (i.e., infinitive), so is the number of compiled
binaries accordingly. To update a pre-trained model with an incre-
mental dataset, a naïve approach would be re-training the model.
However, it is not only computationally expensive, but also may
not be possible due to the unavailability of a previous dataset. An-
other approach is fine-tuning with the arrival of a new dataset.
However, it is well known to suffer from a notorious catastrophic
forgetting (CF) issue [41] (i.e., performance degradation), which
does not retain previously learned information well.

Lately, continual learning (CL; a.k.a lifelong learning) [56] tack-
les the overall problems of handling incrementally provided data,
demonstrating its feasibility as a promising solution in many areas
including (but not limited to) object detection [50, 70], data seg-
mentation [48, 51], and medical imaging [3, 60]. Recent advances
demonstrate the applicability of CL in security domains such as net-
work intrusion detection [1, 54, 61] and malware detection [42, 63].
This work expands a CL application to the binary analysis domain,
which tackles a function name inference problem (from machine
instructions). To the best of our knowledge, we first investigate the
impact of CL on the generative model’s capability for a certain task,
which has yet to be well explored in the security community.

In this paper, we propose BinAdapter, a system that is able to in-
fer function symbol names from a stripped binary by leveraging CL.
We build BinAdapter atop AsmDepictor [39], the state-of-the-art
Transformer-based architecture tailored to a function name predic-
tion task, inserting adapters [26] in the model during training. In
essence, our findings provide two significant insights into the appli-
cation of CL techniques for function symbol name inference. First,
regularization-based CL techniques exhibit less effectiveness when
applied to a generative model compared to a discriminative model:
we empirically discover that an architecture-based CL model (e.g.,
adapter-based tuning [26]) outperforms others. Second, the perfor-
mance of the model is predominately affected by the incremental
tokens in the source (i.e., machine instructions) or the target (i.e.,
function names): 1 In case of no incremental tokens in either the
source or target, merely inserting adapters into AsmDepictor turns
out to be effective. 2 In case of incremental tokens in the source,
the best performance is achieved by adopting multilingual neural
machine translation (M-NMT) and fine-tuning source embeddings
with adapters. 3 With incremental tokens in both the source and
the target, adopting M-NMT and fine-tuning both embeddings with
adapters yields the best results.

To demonstrate the effectiveness of BinAdapter, we define
three scenarios depending on which a new dataset introduces new
tokens (i.e., vocabularies) in either the source or the target. The

scenarios encompass an incremental dataset with or without a set
of new tokens (such as previously unseen machine instructions
or function names), spanning across the known x86_64 architec-
ture or incorporating additional architectures like ARM or MIPS. Our
experiments demonstrate that BinAdapter surpasses the state-of-
the-art CL techniques ([41], [72]) by 18.9% in case 1 and by 24.3%
in case of 2 and 3 . These results indicate that BinAdapter can
successfully learn new tokens from both the source and the tar-
get without any CF from a previous dataset. It is noteworthy to
mention that BinAdapter shows slightly better performance than
even full-retraining a separate model by utilizing up to 53% of all
parameters. Finally, our experiments with multiple optimization
levels demonstrate that BinAdapter can effectively adapt to vary-
ing code transformations, reaching the performance of around 70%
of the F1-score. The following summarizes our contributions:
• We propose BinAdapter, to the best of our knowledge, the first
function name inference approach that is equippedwith a lifelong
learning scheme for a generative model (without the well-known
catastrophic forgetting problem).
• We introduce three efficient CL approaches for predicting func-
tion symbol names. Our experiments reveal that incremental
tokens in both the source and target affect the model’s perfor-
mance.
• We implement the prototype of BinAdapter, and demonstrate
the efficacy and efficiency of BinAdapterwith 3 different scenar-
ios on various incremental datasets (e.g., new binary architectures
and function names).

We open-source BinAdapter 1 to foster further research in the
area of CL for binary reversing.

2 BACKGROUND

Continual Learning. An ordinary approach to machine learning
typically encompasses data collection, data cleansing, and label-
ing, training a model, evaluating the model, and its deployment.
However, such a static model that is sampled from a pre-collected
dataset and/or a fixed set of classes is incapable of coping with
the ever-increasing data stream and a new task in the real world.
For example, a model that learns three-label classification would
fail to recognize an additional label. CL tackles this problem while
handling any incrementally provided data, which allows one to
update an existing model while minimizing its CF on previously
learned information. For effective CL, three promising directions to
overcome CF have been introduced: regularization-based [41, 72],
replay-based [8, 34, 45, 66, 67, 69], and architecture-based [14, 46, 73]
CL. Note that we employ an architecture-based CL technique that
incorporates a parameter isolation method, freezing the old pa-
rameters and utilizing them for learning a new task. Our research
findings indicate that this approach is highly effective in preventing
CF specifically in the context of sequence generation tasks.
Adapter-based Tuning for CL. Houlsby et al. [26] first introduce
adapters for Transformer models as an alternative to fine-tuning
with minimal trainable parameters. Simply put, the adapters are
lightweight modules inserted into pre-trained Transformer [68]
layers, which differs from naïve fine-tuning. Suppose a network

1https://github.com/SecAI-Lab/BinAdapter
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with (pre-)trained parameters𝒘 . While fine-tuning merely adjusts
𝒘 according to a new task (i.e., dataset), adapter-based tuning in-
troduces new modules with randomly initialized parameters 𝒗,
followed by updating only 𝒗 without touching𝒘 . The main benefit
of adapter-based tuning is that a model is free from a notorious for-
getting problem while CL is possible from an incremental dataset
because 1 there is no interaction between tasks, and 2 frozen
parameters preserve performance from an original dataset. Each
adapter [26] consists of two feed-forward multi-layer perceptron
(MLP) layers that adaptively transfer previous knowledge to a new
task. A training step updates those compact adapters alone while
pre-trained parameters stay intact, incorporating a new dataset
without worrying about a catastrophic forgetting problem. Our
work leverages such adapters into a function name prediction task
that assists in binary reversing.
Multilingual Neural Machine Translation (M-NMT). The
Transformer [68]’s encoder-decoder structure has achieved remark-
able success in the NMT field. However, existing models often focus
on a limited number of languages, such as English, necessitating
an efficient means to add new source or target languages without
retraining the models from scratch. A recent advancement [4] in-
troduces multilingual NMT incremental training, which involves
replacing the shared embeddingmatrix with a language-specific em-
bedding matrix. The new language embeddings are then fine-tuned
independently, while freezing other parameters. This approach re-
lies on the availability of shared tokens across different languages.
In our study, we tackle the task of function name prediction in exe-
cutable binaries using a CL approach within the context of M-NMT.
Our finding shows that a naïve M-NMT approach is ineffective due
to the scarcity of common tokens in the case of different hardware
architectures (e.g., less than 3% in Figure 2). Consequently, we de-
vise the scheme of inserting a single adapter [26] module in each
encoder layer and directly fine-tuning the shared embeddings, which
yields improved performance in practice.
Machine Code Representation. Unlike vocabularies (i.e., tokens)
in NLP, disassembled machine instructions can have a massive
number of tokens (e.g., instruction, opcode, operand). The sparsity
of each instruction not only requires too much computational re-
sources to update its own embedding during backpropagation, but
also suffers from an out-of-vocabulary (OOV) problem. Karampatsis
et al. [30] discover that byte-pair-encoding (BPE) [16] can efficiently
handle the vast number of arbitrary tokens for a large language
model tokenizer. Note that BPE is a data compression algorithm
by successively replacing the most common pair of consecutive
characters with a new token. Later, AsmDepictor [39] demonstrates
the effectiveness of BPE in a function name prediction task, which
we adopt in this paper.
Function Symbol Name Inference Task with Deep Learning.

The task of deducing a function name from a sequence of machine
instructions (i.e., binary code snippets) is useful for reverse engi-
neers to gain the insights of a binary. However, it poses a significant
challenge when auxiliary debugging symbols have been stripped
off. Recent advancements [12, 24, 29, 39] demonstrate that a deep
neural network is able to infer the symbol name of a function (i.e.,
as one of debugging information from an executable’s symbol table).
In this work, we apply CL techniques on top of AsmDepictor [39],

a Transformer-based function name inference system due to its
superior performance among others [12, 24, 29].

3 LEVERAGING CONTINUAL LEARNING FOR

FUNCTION NAME INFERENCE

3.1 Motivation

A stripped executable binary retains a very limited amount of
high-level information that has been present in the source code
after complex transformations by a compiler. On the other hand, a
non-stripped binary includes symbol information such as function
names, variable names, and structures in a symbol table primar-
ily for debugging purposes. With that information, recent stud-
ies [2, 9, 12, 29, 38, 43, 52, 58, 59] have revealed that it is possible
to partially recover (infer) symbol names (i.e., labels provided by a
programmer) from machine instructions. While ML-based models
are beneficial for such deductions, the current learning process lim-
its adaptive performance with an additional corpus (e.g., unlearned
function names). Besides, the dynamic nature of binary genera-
tion leads to enriching machine code representations that hold
the same semantics in accordance with the evolution of compilers
and hardware architectures, necessitating a systematic approach to
continual learning with ever-increasing binary datasets.

3.2 Problem Definition and Goal

Problem Description. We focus on the task of predicting func-
tion symbol names, assuming that the original function naming
effectively describes the function’s behavior. The inference process
is akin to language translation tasks in NLP, where we translate
a sequence of machine code into a text (function name) using an
encoder-decoder model like Transformers [68]. However, the tradi-
tional static model with a pre-defined dataset faces limitations when
confronted with unseen machine codes or function names from
an incremental dataset. In general, it is a demanding yet promis-
ing task to maintain an up-to-date model without degrading its
performance with the introduction of new data. CL is an active
research area [5, 33] to address this problem. Likewise, in this work,
we delve into the realm of a continuously learnable and generative
model that can infer function names from a sequence of machine
code by harnessing lifelong learning techniques.
Scope. A wide spectrum of CL approaches encompasses different
targets such as discriminative or generative models, and diverse
datasets that involve incremental labels, data distribution changes,
and increasing volume of data. In our research, we specifically focus
on the CL for a Transformer-based generative model for deducing
function symbol names when provided with an incremental binary
dataset. Our investigation explores various CL approaches and their
applications in various domains to achieve our objective, including
regularizers [41, 72], adapters [35, 73], and M-NMT [4]. We initially
train a static model with a binary dataset for the x86_64 architecture.
Subsequently, we train the model using an incremental dataset
where there are unknown tokens in the original dataset.
Goal. We aim to develop a system that is capable of handling ever-
incremental binary data streams for a generative inference model
without CF, which can predict function names using CL techniques.
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Figure 1: Overview of the CL engine architecture in BinAdapter. We adopt the original AsmDepictor [39] model tailored to a

function symbol name prediction task. For CL, we insert the adapters [26] (i.e., green box) after the multi-head attention layer

in every encoder/decoder of Transformer. It is worth noting that the square boxes in red fonts represent trainable downstream

data during adapter tuning (i.e., adapters, source/target embeddings, and the final output layer). BinAdapter is designed to

take different approaches depending on the presence of common tokens: 1 inserting adapters by default in case that no token

is introduced in the source and the target, 2 adding fine-tuning source embeddings later with adapters in case incremental

tokens are present in the source, and 3 adding fine-tuning both source and target embedding layer with adapters in case

incremental tokens are present in both the source and the target.

3.3 Conceivable Scenarios

Our empirical experiments demonstrate that the whole perfor-
mance of a model using CL techniques largely relies on the set
of (un)seen tokens in the source and the target. Suppose that S and
T represent a set of tokens of the source (i.e., assembly language)
and that of the target (i.e., function name), respectively, which are
collected from the original (initial) dataset. Similarly, S+ and T+

denote a set of additional tokens in the source and the target from
an incremental dataset. The right arrow (→) means re-training a
(continuously learnable) model based on the set of given tokens
between the source and the target. We set up the following three
conceivable scenarios.

• Scenario 1: (S, T) → (S, T)
An incremental dataset does not introduce any new tokens in the
source or the target. In other words, all tokens in the target is a
subset of those in the source. (Leftmost Venn diagram in Figure 2).
• Scenario 2: (S, T) → (S+, T)
An incremental dataset introduces new tokens in the source
alone. (e.g., compiling the same source in a different architecture).
(Centered Venn diagram in Figure 2).
• Scenario 3: (S, T) → (S+, T+)
An incremental dataset introduces new tokens in both the source
and the target, which is the most realistic scenario (e.g., compiling
the different source in a different architecture). (Rightmost Venn
diagram in Figure 2).

Note that we intentionally exclude the case of (S, T) → (S, T+)
because our observation shows that additional (unseen) function
names in the target can commonly introduce additional tokens in

the source. For example, a different function routine typically has a
different function body, introducing additional tokens.

4 DESIGN

Preprocessing Engine. The purpose of the preprocessing step in
BinAdapter is to obtain a sanitized dataset for efficient learning.
For a given binary, we collect source tokens with the following
steps: 1 disassembling the binary, 2 identifying the boundary of
each function to extract the machine instructions within, 3 refining
the whole dataset for better performance (See data refinement in
Section 5), and 4 applying BPE [65] to all instructions, which
assists in generating a reasonable number of input tokens. For
function symbol names, we collect target tokens by splitting an
original function name into a single token (i.e., vocabulary) with
the delimiter of a capital letter (in a camel-case) or an underscore.
Continual Learning Engine. Figure 1 illustrates the overview of
the CL components in BinAdapter. We follow the special design
of the Transformer-based function symbol name prediction model
from AsmDepictor [38] including a three-layer structure in both en-
coder and decoder (rather than six layers in Transformer [68]), per-
layer positional embedding, and the unique softmax in the multi-
head attention. To handle each scenario in Section 3.3, BinAdapter
introduces a corresponding approach. First, Scenario 1 [(S, T) →
(S, T)] is a typical CL configuration where an incremental dataset
is given. As this case assumes that neither the source nor the target
tokens are present (i.e., no OOV) in an incremental dataset, we sim-
ply adopt the adapters [26] structure, one of the architecture-based
approaches, by inserting them between the Attention layers and
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Algorithm 1 Pseudocode for Training Strategies in BinAdapter

Input: S+, T+, 𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑_𝑚𝑜𝑑𝑒𝑙
Output: State_dict of (new embedding and) adapter
𝑎𝑑𝑎𝑝𝑡𝑒𝑟 ← 𝑛𝑒𝑤𝐴𝑑𝑎𝑝𝑡𝑒𝑟 (𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑_𝑚𝑜𝑑𝑒𝑙)
if S+ ⊆ S and T + ⊆ T then ⊲ Scenario 1

𝑡𝑟𝑎𝑖𝑛(𝑎𝑑𝑎𝑝𝑡𝑒𝑟 )
𝑠𝑎𝑣𝑒 (𝑎𝑑𝑎𝑝𝑡𝑒𝑟 )

else if S+ ⊈ S and T + ⊆ T then ⊲ Scenario 2
𝑓 𝑖𝑛𝑒𝑇𝑢𝑛𝑒 (𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑_𝑚𝑜𝑑𝑒𝑙 .𝑠𝑟𝑐_𝑒𝑚𝑏𝑒𝑑, 𝑎𝑑𝑎𝑝𝑡𝑒𝑟 )
𝑠𝑎𝑣𝑒 (𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑_𝑚𝑜𝑑𝑒𝑙 .𝑠𝑟𝑐_𝑒𝑚𝑏𝑒𝑑, 𝑎𝑑𝑎𝑝𝑡𝑒𝑟 )

else if S+ ⊈ S and T + ⊈ T then ⊲ Scenario 3
𝑓 𝑖𝑛𝑒𝑇𝑢𝑛𝑒 (𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑_𝑚𝑜𝑑𝑒𝑙 .𝑠𝑟𝑐_𝑒𝑚𝑏𝑒𝑑,
𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑_𝑚𝑜𝑑𝑒𝑙 .𝑡𝑔𝑡_𝑒𝑚𝑏𝑒𝑑, 𝑎𝑑𝑎𝑝𝑡𝑒𝑟 )
𝑠𝑎𝑣𝑒 (𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑_𝑚𝑜𝑑𝑒𝑙 .𝑠𝑟𝑐_𝑒𝑚𝑏𝑒𝑑,
𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑_𝑚𝑜𝑑𝑒𝑙 .𝑡𝑔𝑡_𝑒𝑚𝑏𝑒𝑑, 𝑎𝑑𝑎𝑝𝑡𝑒𝑟 )

end if

feed-forward layers of AsmDepictor. In essence, one can insert the
adapters ( 1 in Figure 1) dynamically and only train them while pre-
serving other pre-trained parameters to prevent CF. While adapters
are efficient in handling model adaptivity for an incremental dataset
without compromising its performance from a previous dataset,
our experiment indicates that training only adapter modules does
not scale for a new vocabulary.

Secondly, Scenario 2 [(S, T) → (S+, T)] assumes that an incre-
mental dataset introduces source tokens alone. As is common to
compile an executable binary with the same source code but a dif-
ferent environment or setting (e.g., architecture, compiler, compiler
version, optimization level), the source tokens may vary accord-
ingly. We adopt the M-NMT technique [4] that is capable of coping
with new tokens without requiring to separately training a new
model. On top of that, we fine-tune source embeddings solely in the
encoder ( 2 in Figure 1) because our finding shows performance
degradation in case that the common source tokens between an
initial dataset and an incremental dataset are extremely rare, like a
cross-architecture binary.

Third, Scenario 3 [(S, T) → (S+, T+)] assumes that an incre-
mental dataset introduces both source tokens and target tokens.
We apply a similar approach to Scenario 2 by fine-tuning both
source embeddings in the encoder ( 2 in Figure 1) and target em-
beddings in the decoder ( 3 in Figure 1). Specifically, we include the
Transformer decoder’s embedding matrix and output layer during
training, known as the vocabulary projection matrix.

Algorithm 1 shows the pseudocode that describes a different
training strategy depending on the three aforementioned scenarios.
In a nutshell, given an incremental dataset, BinAdapter chooses
the corresponding training module: inserting adapters for Scenario
1, M-NMT and fine-tuning source embeddings with adapters for
Scenario 2, andM-NMT and fine-tuning both source and destination
embeddings with adapters for Scenario 3.
Inference Engine. Once the model has been trained with the CL
engine in Section 4, we now have an incremental module produced
by adapters (i.e., adapter modules) and a set of incremental tokens
accordingly (from an incremental dataset). Note that BinAdapter

separately stores the adapter module, vocabulary, and correspond-
ing embeddings for each incremental dataset. During the inference,
BinAdapter first identifies the correct embeddings bymatching vo-
cabulary from given instructions, followed by choosing a respective
adapter module(s) to be loaded.

5 IMPLEMENTATION

Data Refinement. We wrote the preprocessing script in Python
that is applicable for all architectures in Ghidra [53], handling both
machine instructions and function names. We refine our dataset
with the following strategies for better performance by: 1 ex-
cluding linker-inserted functions such as deregister_tm_clones,
frame_dummy, and __do_global_dtors_aux, 2 removing functions
that contain one instruction; e.g., jump or ret, which is mostly a
wrapper that calls another function within because it does not im-
ply meaningful (contextual) semantics corresponding to a function
name, and 3 eliminating duplicate functions from our final corpus
that has the same function body but different function names be-
cause such a sample could degrade the overall model performance
during learning. For BPE, we use subword-nmt [64] for subword-
based tokenization by setting the vocabulary threshold of 10, 000.
For the programs written in C++, we apply a simple rule for (man-
gled) function names, which removes special letters other than a
tilda (∼) that represents a destructor.
Model Implementation. We employ the publicly available As-
mDepictor Transformer [37] model using Pytorch [57]. We follow
the original implementation, discarding all tokens that are longer
than 300 in each sequence. We use a scheduled Adam optimizer
with 𝛽1 = 0.9, 𝛽2 = 0.98 and 𝜖 = 10−9 as proposed by the original
Transformer. However, we modify a warmup step and a multipli-
cation factor differently according to a new dataset size and CL
techniques in our experiments (mainly up to 10,000 and 1.0, re-
spectively). For Adapters, we adopt the original implementation
provided by Zhang et al. [73] with the GELU (Gaussian Error Lin-
ear Unit) [25] activation function as a nonlinear part between the
two fully connected layers. We initialize Adapters randomly for
each incremental data and train it for 20-50 epochs (until reaching
a convergence). Lastly, Adapters are significantly affected by the
learning rate. Hence, for effective regulation, we establish warmup
steps and a multiplication factor in a scheduler with the values of
4,000 and 1.0, respectively.
Hyperparameter Tuning for Baselines. We observe that the
techniques based on regularization such as EWC [41] and SI [72]
are highly sensitive to hyperparameters. EWC and SI as our base-
lines utilize a single hyperparameter for tuning (i.e., regularization
coefficient), dubbed a lambda value (𝜆), which defines the penalty
applied to important parameters for each task. We empirically set
up the coefficient (𝜆) to 25 for both EWC and SI. As a final note, in
LoRA [28], we set a ranking (r) parameter to 16 that records the
best performance.

6 EVALUATION

In this section, we evaluate BinAdapter with three research ques-
tions. We run our experiments on a 64-bit Ubuntu 20.04 system
equipped with Intel(R) Xeon(R) Gold 5218R CPU 2.10GHz, 256GB
RAM, and two RTX A6000 GPUs.
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Figure 2: A Venn diagram to illustrate the distribution of common tokens (vocabularies) between the initial dataset and the

incremental datasets (i.e., AsmDepictor, BinKit, SPEC2006) at a glance. Note that 1 represents the token distribution for the

source (i.e., machine instructions with BPE), and 2 represents that for the target (i.e., function names). For example, the

AsmDepictor dataset shows that the entire tokens in the incremental datasets (e.g.,𝐴[1−3]) are the subset of the tokens from the

initial dataset (e.g., 𝐴0). On the contrary, the BinKit dataset depicts that the source tokens are rarely shared between different

instruction set architectures (ISAs). The notation that represents each dataset follows Table 2.

Table 1: We set up three experiments (Section 3.3) where

BinAdapter takes different approaches according to each

scenario. Note that the source tokens from an incremental

dataset with a different architecture retains little common

(source) tokens in the initial dataset due to different ISAs.

Scenario Incremental Data Approach

(S, T) → (S, T) AsmDepictor (x64) Adapters
(S, T) → (S+, T) BinKit (ARM, MIPS) Adapters + Src Emb

(S, T) → (S+, T+) SPEC2006 (x64), Adapters + Src + Tgt EmbBinKit (ARM, MIPS)

6.1 Dataset

Corpus Generation. We prepare our binary corpus from three
different datasets including AsmDepictor [38], BinKit [36], and
SPEC2006 [10]. First, we utilize the whole dataset provided by As-
mDepictor [39], which consists of 3, 063 binaries. Second, by lever-
aging BinKit [36], we create 1, 166 binaries for ARM-64 (big-endian)
and MIPS-64 (little endian) architectures that are compiled with
Crosstool-NG [11] that supports cross-compiling in Linux. Binkit
includes popular C libraries and programs such as binutils [19],
coreutils [20], findutils [21], BusyBox [7], OpenSSL [55], etc. For
our experiment, we filter out unique binaries compiled with gcc

v6.4 and clang v5.0 with the -O2 optimization level. Third, we gen-
erate 24 C-written binaries with the default build script (using both
gcc and clang) provided by SPEC2006 [10]. Lastly, we create 87
C++-written binaries from BinKit [36] (e.g., file extensions with .cc

and .cpp). Table 2 summarizes the whole binary corpus for our CL
experiments.

6.2 Experimental Setup

6.2.1 Incremental Scenarios. To demonstrate the effectiveness of
BinAdapter, we carefully set up our experiments according to
each scenario (Section 3.3). Table 1 summarizes the overall settings
of each BinAdapter approach with its corresponding dataset.
Scenario 1: (S, T) → (S, T). The first scenario occurs when an
incremental dataset introduces neither new source tokens nor new

target tokens. For this case, we use the AsmDepictor [38] dataset
alone. We split the whole functions in the dataset into four parts:
𝐴0, 𝐴1, 𝐴2, and 𝐴3. 𝐴0 is the initial dataset (i.e., 258,692 functions)
for training, and all others (𝐴[1− 3]) are three incremental datasets
with around 12%, 8%, and 4% more unseen functions, respectively
(Table 2).
Scenario 2: (S, T) → (S+, T). The second scenario is where an
incremental dataset introduces new source tokens alone. This case
is common because an executable binary may be diverse with the
same source code when compiled with a different compiler, the
compiler version, optimization level, or different architecture. For
this scenario, we adopt the dataset from BinKit [6] where B1 and
B2 binaries are compiled for different architectures (e.g., ARM-64
and MIPS-64). We define ARM and MIPS binaries as two incremen-
tal datasets (𝐵1 and 𝐵2) and C++ programs as 𝐵3 from x86_64 as
in Table 2 where 𝐴 is the initially trained dataset. As expected, the
distribution of the source tokens because the instructions in another
architecture largely differs from those in the initial dataset (e.g.,
x86_64). Unlike in Scenario 1, here the entire AsmDepictor dataset
(𝐴: 323,364 functions) is the initial dataset (Table 2) and we record
its original performance as an initial performance. Note that we
include part of the functions in BinKit whose target tokens are the
subset of the initial dataset (T). The statistics to meet such criteria
is 142, 814 functions (i.e., 6, 929 target tokens) from 500 binaries
on MIPS, and 103, 897 functions (i.e., 9, 949 target tokens) from 494
binaries on ARM (This is not shown in Table 2).
Scenario 3: (S, T) → (S+, T+

). We define the third scenario
where an incremental dataset introduces both new source tokens
and new target tokens. For x86_64 architecture, we utilize the
SPEC2006 [10] dataset as two incremental datasets (𝑆1 and 𝑆2 in Ta-
ble 2). We set up the entire AsmDepictor dataset (𝐴: 323,364 func-
tions) as the initial dataset (Table 2). Likewise, for ARM and MIPS

binaries, we harness two incremental datasets (𝐵1 and 𝐵2) from
BinKit [6] (Table 2).

6.2.2 Common Token Analysis in the Corpus. Figure 2 illustrates
the distribution of common vocabularies between the dataset for
initial training and the incremental datasets. 1 and 2 represent
the token distribution for the source (i.e., assembly code with BPE)
and the target (i.e., function name), respectively. For example, the
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Table 2: Summary of our binary corpus for continual learning experiments. We use three datasets from (A)smDepictor [39],

(B)inKit [6, 36], and (S)PEC2006 [10]. We split the AsmDepictor dataset (A) into four parts where 𝐴0 is the initial dataset, and
𝐴[1− 3] are incremental. Similarly, we utilize the BinKit and SPEC2006 datasets as part of incremental datasets (𝐵 [1− 3], 𝑆 [1− 2])
where the whole 𝐴 dataset is the initial one. The B3 dataset represents C++ programs from BinKit. We elaborate on preparing

the datasets in Section 6.1.

Corpus (A)smDepictor [38] (B)inkit [36] (S)PEC2006 [10]

# of Functions A A0 A1 A2 A3 B1 B2 B3 S1 S2
Architecture x86_64 ARM MIPS x86_64 x86_64

Train 323,364 258,692 30,672 20,000 10,000 95,656 130,473 78,761 32,336 16,168
Valid/Test 80,842 64,674 7,168 6,000 5,000 23,915 32,619 19,690 6,006 2,000
Inc. Rate - - +11.8% +7.7% +3.8% +29.5% +40.3% +24.3% +9.9% +4.9%
# of Tokens w/ BPE (Instruction) 9,923 9,923 6,876 3,654 2,453 9,951 9,674 9,183 1,037 1,032
# of Tokens (Function Name) 23,663 23,663 14,969 7,786 3,941 7,168 7,886 4,108 5,910 5,098

rate of common source tokens (i.e., overlapping area) in the middle
Ven diagram of Figure 2 is indeed at most 2% between the set of
binaries on x86_64 (𝐴 from AsmDepictor), the one on ARM (𝐵1 from
BinKit), and the one on MIPS (𝐵2 from BinKit) as defined in Table 2.

6.2.3 EvaluationMetrics. We assess our approachwith two popular
evaluation metrics, namely, F1 and Rouge-l. We compute the F1-
score as the harmonic means of a precision (P) and a recall (R)
where TP, TN, FP, and FN represent the number of true positives,
true negatives, false positives, and false negatives, respectively.

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 , 𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 , 𝐹1 =
2 · 𝑃 · 𝑅
𝑃 + 𝑅 (1)

We also adopt Rouge-l [44], an automatic evaluation metric for the
quality of a machine translation task using the longest common
subsequence (LCS) and skip-gram statistics.

6.2.4 Research Questions. We raise the following four research
questions to assess BinAdapter for each scenario in terms of 1
effectiveness, 2 efficiency, 3 ablation studies, and 4 capability of
learning varying code semantics. Besides, we demonstrate a case
study of BinAdapter with notable examples.
• RQ1. How effective is BinAdapter in different scenarios (Ta-
ble 1) compared to other CL baseline techniques for a function
name prediction task (Section 6.3)?
• RQ2. How efficient is BinAdapter in terms of training parame-
ters, storage overheads, and inference time (Section 6.4)?
• RQ3.How appropriate is the current design of BinAdapterwith
ablation studies (e.g., number of adapters, fine-tuning layers)
(Section 6.5)?
• RQ4. How does BinAdapter learn transformed code semantics
like optimization levels (Section 6.6)?

6.3 Effectiveness (RQ1)

6.3.1 Scenario 1. Baselines. We set up the five baselines for the
comparison with BinAdapter: two fine-tuning methods (FT and
FT + Enc in Figure 3), EWC [41], SI [72], which are standard CL
techniques and LoRA [28] adaptive modules with CL, when no
new token is introduced. One of well well-known means to train
a model on a new dataset would be fine-tuning the trained model.
We perform two types of fine-tuning on the model trained with 𝐴0
in Table 2): 1 fine-tuning all encoder and decoder layers on a new
dataset with the pre-trained weights (FT), and 2 fine-tuning only

Table 3: Performance comparison results between

BinAdapter and five baseline CL techniques under

Scenario 1 with incremental datasets from AsmDepictor

(i.e., 𝐴[1 − 3] in Table 2). Each metric is averaged over three

incremental learning datasets.

Technique Precision Recall F1 Rouge-l

FT (Encoder + Decoder) 21.88 19.89 20.25 21.76
FT (Encoder only) 36.32 33.99 34.38 36.15
EWC [41] 41.76 40.65 41.04 45.75
SI [72] 39.22 38.05 38.32 41.56
LoRA+CL [28] 59.53 57.76 58.89 60.31
BinAdapter 60.56 59.32 59.89 61.44

top encoder layers while freezing the rest modules (FT + Enc). Next,
we examine both EWC [41] and SI [72] techniques from the open-
source project that is maintained by Hsu et al. [27]. Lastly, we utilize
LoRA [28] for CL by freezing pre-trained model parameters and
training LoRA modules alone (LoRA + CL). We directly insert LoRA
to Asmdepictor [39] into each attention layer of both encoders and
decoders (i.e., query (𝑄), key (𝐾 ), and value (𝑉 ) vectors), followed
by training those modules for each dataset.
Results. Table 3 displays the average precision, recall, F1, and
Rouge-l of BinAdapter compared with the five baseline techniques
for all data splits (A[0-3]). BinAdapter surpasses all baselines on
average. Figure 3 visualizes the breakdown of the inferences from
an incremental dataset (upper) and the ones from the initial dataset
of A0 (lower). Because we leverage LoRA as a parameter isolation
technique to preserve pre-trained parameters like Adapters, the
performance of BinAdapter does not drop as in Figure 3 (lower).
On the other hand, strong regularization algorithms in EWC and
SI exhibit even better performance, however, they suffer from CF
(e.g., drastically dropping Rouge-l values: SI: 0.71 → 0.20, EWC:
0.67→ 0.30) for the previous dataset (Figure 3 - lower).

6.3.2 Scenario 2. Baselines. In this scenario, the regularization-
based baselines like SI and EWC are excluded because they fail
to extend new vocabularies from an incremental dataset. Instead,
we include full retraining by retraining an existing model with
the incremental dataset for comparison. We compare BinAdapter
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Figure 3: Performance comparison between BinAdapter

and five CL baselines under Scenario 1. The upper plot shows

the Rouge-l values for newly learned function names from

incremental datasets whereas the lower plot shows the per-

formance for the initial dataset (A0) after learning each incre-

mental data (A[1-3]). The lines indicate the forgetting rates

of each baseline. While both EWC and SI exhibit marginal

improvements (upper), they are susceptible to a catastrophic

forgetting problem (lower). On average,BinAdapter demon-

strates superior performance, achieving an F1 score of 59.9

or a Rouge-l score of 61.4.

with the M-NMT approach [4] that includes adapters by default.
Besides, we set up the baselines of BinAdapterwith LoRA,M-NMT
with LoRA, BinAdapter without adapters, and N-NMT without
adapters to confirm the evident effectiveness of LoRA and Adapters.
Results. Table 4 summarizes the comparison results using the same
metrics (i.e., precision, recall, F1, Rouge-l) according to each incre-
mental dataset (e.g., 𝐵1 (ARM), 𝐵2 (MIPS), and 𝐵3 (x86_64; C++) from
BinKit). The results show that the performance of BinAdapter and
the baseline techniques are agnostic to language-specific dataset
(i.e., different ISAs). While BinAdapter outperforms other base-
lines (F1 of 69.67 and Rouge-l of 71.13) on average, the experi-
mental performances between the techniques with LoRA and the
ones without adapters are different. Namely, the performances
of BinAdapter and M-NMT between eliminating adapters and
adding LoRA modules are hard to rank each other. Interestingly,
although we observe similar performance between LoRA + CL and
BinAdapter in Scenario 1, LoRA fails to effectively adapt to which
new instructions have been introduced. Figure 4 depicts a learn-
ing process with F1 per epoch between BinAdapter with LoRA
and BinAdapter (adapter modules only). Finally, the lower plot
in Figure 5 shows that the overall performance of BinAdapter
with incremental datasets does not fluctuate.

6.3.3 Scenario 3. Baselines. We utilize the same baselines with
Scenario 2 because Scenario 3 requires to handle new vocabularies

Table 4: Performance comparison of BinAdapter with re-

training, and five CL baseline techniques under Scenario 2

with incremental datasets from BinKit (𝐵 [1 − 3] in Table 2).

Our experiments include both BinAdapter and M-NMT

with LoRA and without Adapters. BinAdapter surpasses

all other techniques, achieving an F1 of 70.47 on average.

Technique Dataset Precision Recall F1 Rouge-L

None (Original Model) A 71.52 71.53 71.52 73.73

Retraining

B1 66.21 64.34 65.47 69.23
B2 67.83 66.01 66.87 71.08
B3 79.29 76.91 76.87 77.82

M-NMT w/o

Adapters [4]

B1 11.35 8.54 9.08 10.02
B2 15.12 14.12 14.96 14.45
B3 14.35 14.35 13.91 16.42

M-NMT w/

LoRA [4, 28]

B1 8.43 6.01 6.52 12.34
B2 13.02 13.99 13.59 23.06
B3 15.09 19.35 15.48 20.89

M-NMT [26]
B1 32.65 29.88 30.22 35.72
B2 33.56 34.98 33.91 40.38
B3 52.99 53.33 51.78 52.61

BinAdapter

w/o Adapters

B1 66.03 64.32 64.67 68.56
B2 66.99 64.97 65.78 65.87
B3 66.44 62.15 62.46 63.32

BinAdapter

w/ LoRA

B1 55.78 54.32 54.08 53.60
B2 61.33 58.44 59.57 60.60
B3 67.59 61.91 62.51 62.93

BinAdapter

B1 68.97 66.42 67.09 67.75

B2 72.87 70.23 70.96 71.74

B3 75.65 73.91 73.38 74.67
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Figure 4: Illustration of a learning process per epoch between

BinAdapter w/ LoRA and BinAdapter adaptation process

using the 𝐵3 dataset under Scenario 2.

as well. Note that we evaluate BinAdapter with both SPEC2006
and BinKit datasets from Table 2.
Results with SPEC2006. Table 5 reports the precision, recall,
F1, and Rouge-l of BinAdapter compared with full retraining and
the five baseline techniques for S1 and S2 datasets. M-NMT and
BinAdapter are comparable F1 (60.55 VS 61.37) and Rouge-l values
(61.45 VS 62.03) with a marginal improvement of BinAdapter. Ad-
ditionally, the techniques that detach adapters show noticeable per-
formance degradation whereas the ones that insert LoRA modules
demonstrate slightly lower performance than the original M-NMT
and BinAdapter. A final note is that, even with full retraining,
the performance is no better than BinAdapter on average (F1 of

859



BinAdapter: Leveraging Continual Learning for Inferring Function Symbol Names in a Binary ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Table 5: Performance comparison results between

BinAdapter, five baseline CL techniques, and full-

retraining under Scenario 3 with incremental datasets from

SPEC2006 (𝑆 [1− 2] in Table 2). Our experiments include both

BinAdapter and the M-NMT approaches with LoRA and

without adapters.

Technique Precision Recall F1 Rouge-l

None (Original Model) 71.52 71.53 71.52 73.75
Retraining 61.32 60.02 60.29 61.91
M-NMT w/o Adapters 42.06 39.78 40.13 43.04
M-NMT w/ LoRA 57.11 56.32 56.23 56.69
M-NMT 61.67 59.85 60.55 61.45
BinAdapter w/o Adapters 44.67 42.34 43.47 45.38
BinAdapter w/ LoRA 55.38 53.84 54.12 54.38
BinAdapter 62.93 61.12 61.37 62.03

Figure 5: Performance comparison between BinAdapter

and four baseline CL techniques with incremental datasets

under Scenario 2 (upper) and Scenario 3 (lower). The Rouge-l

with A indicates the initial (original) performance in AsmDe-

pictor [39]. The performance with BinAdapter is compara-

ble to retraining cases.

61.37 and Rouge-l of 62.03). The upper plot in Figure 5 depicts the
decreasing Rouge-l values with incremental datasets, which we
hypothesize that the incremental size of the dataset (i.e., SPEC2006)
is relatively small (e.g., < 10%).
Results with BinKit. Similarly, Table 6 briefly describes the per-
formance comparison with the BinKit dataset (e.g., 𝐵 [1−3]). Similar
to others, BinAdapter shows comparable performance to M-NMT
with a marginal advance (F1 of 71.24 and Rouge-l of 72.53) on
average.

6.4 Efficiency (RQ2)

Training Parameters. BinAdapter incorporates three distinct
approaches to accommodate different types of incremental datasets.
Each approach is tailored to handle datasets that contain unseen

Table 6: Performance comparison between BinAdapter and

M-NMT as a baseline under Scenario 3 with B[1-3] dataset).

BinAdapter outperforms M-NMT by a small margin.

Technique Dataset Precision Recall F1 Rouge-l

M-NMT

B1 70.12 69.06 68.34 69.46
B2 70.34 68.57 69.01 69.78
B3 71.99 70.10 69.52 70.67

BinAdapter

B1 71.85 69.38 69.91 70.67

B2 73.97 71.63 72.84 73.44

B3 74.11 72.02 71.51 72.91

Table 7: Training layers per scenario and the number of train-

ing parameters. BinAdapter takes three approaches into

account, relying on unseen tokens in the source, target, or

both. Our findings show that inserting adapters is sufficient

in case of no new tokens in an incremental dataset, source

and target embedding layers are required to achieve a desir-

able performance.

Scenario Training Params Training Layers

1 1.5M (3.1%) Adapters
2 17.2M (43.1%) Src Emb + Adapters
3 21.2M (53.1%) Tgt Emb + Src Emb + Adapters

Figure 6: Illustration of storage and inference time overheads

with the new dataset arrivals. As the number of modules in-

creases in BinAdapter, the whole model size grows propor-

tionally (left). Similarly, both loading adapters/embeddings

and inference (e.g., 100 samples) rise (right).

tokens in the source, target, or both. While the last approach (Sce-
nario 3; (S, T) → (S+, T+)) is capable of covering all scenarios,
we deliberately separate each case to be handled with a different
approach for the sake of efficiency. Table 7 outlines the target layers
to be trained for each scenario and the corresponding number of
training parameters. In the absence of unseen tokens in an incre-
mental dataset, a lightweight model that solely inserts adapters
demonstrates minimal performance degradation, with 3.1% of the
number of parameters for initial training. However, our findings
show that introducing either source or target embedding layers
achieves a desirable performance improvement, even with the in-
crease in parameters (e.g., 43.1% and 53.1%, respectively).
Storage Overheads and Inference Time. As the number of incre-
mental datasets increases, the number of adapter modules increases
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Table 8: Ablation study to determine the optimal layer(s) for

the source tokens on an incremental dataset. The experimen-

tal results reveal that tuning the source embedding layer

alone produces comparable performance to others, having

a relatively small number of trainable parameters (RQ3 in

Section 6.5).

Fine-tuned Layer(s) F1-score Rouge-l Trained Params

Src Emb Layer 64.42 63.22 17M (42.9%)

Src Emb + 1st Encoder 62.89 66.54 20M (51.1%)
Src Emb + 1st/2nd Encoder 64.67 67.34 23M (59.4%)
Src Emb + All Encoder 63.79 63.78 26M (67.7%)

Table 9: Analysis on the impact of the number of adapters in

a layer (RQ3 in Section 6.5). Unlike the original design that

introduces two adapters in a single layer, we insert a single

adapter per layer because increasing the number of adapters

does not lead performance advancement. Note that we as-

sume Scenario 1 (Section 6.3) using the 𝐴1 dataset (Table 2).

# of Adapters Per Layer F1 Rouge-l Trained Params

1 61.17 61.87 1.5M (3.1%)

2 61.31 61.88 3.2M (6.1%)

because BinAdapter utilizes M-NMT with adapters, which incurs
more storage overheads by design. Figure 6 (left) illustrates the
storage overhead where the whole size of adapters grows (closely)
proportional to the arrival of new datasets. In a similar vein, Fig-
ure 6 (right) depicts the breakdown of the inference overheads into
loading and inference time, being affected by additional datasets.

6.5 Design Appropriateness (RQ3)

Ablation Study for Fine-tuning Layers. We conduct an ablation
study to determine the optimal layer(s) for the (source) vocabularies
on an incremental dataset. In this study, we train a Transformer
model by incrementally unfreezing (i.e., training) one encoder layer
at a time, while comparing performance metrics and the number
of trainable parameters. As shown in Table 8, our finding indicates
that introducing additional layers does not improve the overall per-
formance whereas the number of parameters increases accordingly,
for example, from 17M to 26M. Finally, we make the decision to
incorporate a source embedding layer for source tokens and a target
embedding layer for target tokens from an incremental dataset.
Number of Adapters. We investigate the impact of inserting
adapters on the number of trainable parameters (i.e., weights), aim-
ing to strike a balance between efficacy and efficiency. We conduct
two separate experiments, namely Scenario 1 (Section 6.3) using
the 𝐴1 dataset (Table 2) as followings. First, we assess the number
of adapters in a single layer. The original design of adapters [26]
harnesses two adapters at each Transformer layer; i.e., between two
feed forward layers and layer normalization. However, as in Table 9,
our results indicate that inserting two adapters does not signifi-
cantly increase overall performance, despite doubling the number

of parameters (i.e., 1.5M→ 3.2M). Second, we examine the impact
of the number of adapters across the whole Transformer structure
(i.e., encoders and decoders). Table 10 presents the results for four
cases depending on the adapter insertion locations: e.g., the first
encoder layer (1 adapter), the first encoder and decoder layers (2
adapters), all three encoder layers (3 adapters), and all three en-
coder and decoder layers (6 adapters). In this scenario, we observe
a notable performance improvement, with F1 scores from 34.4% to
61.2%, which scales proportionally with the number of adapters.
Based on these findings, we choose to insert a total of six adapters,
with one adapter for each encoder and decoder for BinAdapter.

6.6 Learning Code Semantics (RQ4)

This section explores the BinAdapter’s capability of learning trans-
formed code semantics in practice. To this end, we generate an
additional dataset with different optimization levels including O0,
O1, and O3 for both C and C++ written programs in BinKit [6].
Table 11 summarizes the extended corpus statistics: the number of
functions (1,444,781 in total) and the number of tokens for instruc-
tions and function names. Because the original Asmdepictor [39]
has been trained with O2 alone, we train our own model with the
dataset, followed by explicit training BinAdapter under Scenario
2 (Section 3.3). Table 12 reports that BinAdapter can successfully
learn a new dataset with a smaller size of model parameters (40%),
demonstrating comparable performance with retraining.

6.7 Case Study

With the incremental dataset from the binaries compiled for MIPS
(i.e., 𝐵2 in Table 2) BinAdapter quickly learns both new source
and target tokens. We observe that, in some cases, our model with
CL assists to make a better inference (i.e., closer to the ground
truth) than a full training model. For example, BinAdapter pre-
dicts the function symbol name of elfcore_write_ppc_vmx as
elfcore_write_ppc_tm_cvmx whereas stab_class_method_var
from the full training model. Table 13 showcases the examples of
successfully inferring function symbol names with our CL tech-
niques. Meanwhile, the prediction has been failed with the original
model due to the lack of new vocabulary knowledge (e.g., MIPS
instructions).

7 DISCUSSIONS AND LIMITATIONS

Alternative Solutions to CL. One of the ultimate goals is to build
an artificial agent that could autonomously and constantly learn
complex knowledge from ever-growing information like humans.
One straightforward approach for knowledge accumulation would
be re-training the whole dataset from scratch. Although re-training
every time could preserve model performance, it inevitably suffers
from an immense computational overhead. Another direction for
learning new knowledge is a fine-tuning technique (i.e., transfer
learning) on a new dataset based on a pre-trained model. While
consuming relatively lower resources, the downside of fine-tuning
is the significant loss for existing knowledge (i.e., CF) when learning
new information. Note that CL techniques come into play to retain
performance at a reasonable computational cost.
Robustness against Code Transformations. A binary can be
diversified through aggressive transformations with various code
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Table 10: Analysis on the impact of the number of adapters across the entire Transformer layers (both encoder and decoder).

We observe a remarkable performance enhancement by increasing the number of adapters. Based on the results, the current

design of BinAdapter has a total of six adapters for all layers (RQ3 in Section 6.5).

# of Adapters F1 Rouge-l Trained Params Adapter inserted Layers

1 34.36 36.57 0.2M (0.5%) 1 Encoder Layer
2 35.23 37.02 0.5M (1.1%) 1 Encoder Layer, 1 Decoder Layer
3 57.35 57.96 0.8M (1.6%) 3 Encoder Layers
6 61.17 61.87 1.5M (3.1%) 3 Encoder Layers, 3 Decoder Layers

Table 11: A new dataset compiled with multiple optimization levels from BinKit [36] (RQ4 in Section 6.6).

Corpus B1 (ARM) B2 (MIPS) B3 (x86_64)
# of Functions O0 O1 O3 O0 O1 O3 O0 O1 O3
Train 104,787 113,379 87,285 188,176 167,630 126,664 84,825 81,464 77,753
Valid/Test 24,845 20,008 15,404 33,208 29,582 22,353 21,206 20,365 19,438
# of Tokens w/ BPE (Instruction) 8,032 9,084 9,151 6,661 9,149 9,144 9,495 9,174 9,160
# of Tokens (Function Name) 7,627 7,407 6,229 8,580 8,153 9,613 4,237 4,096 4,034

Table 12:We confirm thatBinAdapter is capable of learning

new knowledge with the additional dataset (Table 11). With

40% parameters of the retrained model, BinAdapter shows

comparable F1 values (RQ4 in Section 6.6).

BinAdapter Base (Retraining)
Dataset Opt. Precision Recall F1 Precision Recall F1

B1

O0 65.84 63.66 64.73 64.07 62.97 63.51
O1 66.39 64.13 65.24 65.95 64.57 65.25
O3 75.04 72.53 72.63 76.22 74.94 74.83

B2

O0 71.45 70.72 70.15 72.96 72.79 72.35
O1 69.73 70.06 68.99 71.15 70.31 69.93
O3 71.62 71.1 70.43 71.84 70.92 70.59

B3

O0 84.65 83.96 84.31 85.17 84.37 84.76
O1 82.96 81.01 80.85 81.89 80.29 80.17
O3 72.09 71.62 71.85 72.15 70.63 70.16

obfuscation techniques (e.g., dead code insertion, opaque predicates,
loop unrolling, polymorphism). Such disturbing cases that include
deliberately aggressive transformations are orthogonal to our work,
however, we hypothesize that BinAdapter could additionally learn
some code structures from an incremental dataset. Conversely,
BinAdapter could potentially acquire a deeper understanding of
code semantics from a dynamically evolving function, such as a
version that has undergone bug patches.
Generalizability of Continual Learning to Other Models. Re-
cent advances in NLP and CL have demonstrated the successful uti-
lization of adapters for language models while preserving previous
knowledge. The key aspect of an adapter lies in a module replace-
ment during inference. Likewise, BinAdapter incorporates adapter
modules into the Transformer-based architecture like BERT [13]
and GPT [62]. However, the optimal insertion location(s) within a
model remains an open problem (but agnostic to our approach) for
adapter-based CL techniques.

Storage Overheads and Inference Time. BinAdapter unavoid-
ably requires more resources as the number of modules increases.
Accordingly, seeking and loading the appropriate adapter modules
may take a while, impeding prompt inferences. Modotto et al. [46]
propose an Entropy-based classifier to select the correct adapter
during test time, but their focus is primarily on Task-Oriented Dia-
logue Systems, which deviates from our data incremental settings.
Hence, handling multiple adapters to augment similar embeddings
and adapters efficiently is part of our future work.
Continual LearningTechniquesRequiring a PreviousDataset.

Replay-based CL approaches (e.g., [45]) show superior performance
over regularizers [41] without extra modules to be trained. Recently,
Gao et al. demonstrate an advanced replay-based technique, RE-
PEAT [18] for managing ever-incremental source code datasets
with comparably less forgetting. However, these techniques require
pre-selected exemplars from a previous dataset, which we put aside
from our baselines. Meanwhile, BinAdapter addresses CF in ex-
change for an additional space and training time along with an
incremental dataset, which does not need prior exemplars.

8 RELATEDWORK

We survey the literature on CL in NLP, categorizing varying tech-
niques into three main types: regularization, rehearsal, and archi-
tectural strategies. Meanwhile, ML-assisted binary reversing has
been extensively explored in the field.
Regularization-based CL. One direction to mitigate CF for CL is
to penalize changes to the model parameters that would negatively
impact the performance on previously learned tasks. Elastic Weight
Consolidation (EWC) [41] places a penalty on the change in model
parameters by estimating the importance of each parameter from
previous tasks. Similarly, Synaptic Intelligence (SI) [72] introduces
a computationally efficient technique, which computes the impor-
tance of each parameter based on the sensitivity of a loss function
upon parameter changes. We compare BinAdapter with the two
above regularization-based CL techniques as a baseline.
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Table 13: Examples of successful inferences with BinAdapter with the 𝐵2 (MIPS) dataset. MR denotes “Matching Words Ratio”

by taking the ratio of correctly predicted ones out of all tokens. We mark the ratio in bold in case that BinAdapter’s prediction

shows a higher MR. The rightmost column demonstrates the prediction failures from the original model that does not learn a

new vocabulary (e.g., MIPS instructions).

Ground Truth Prediction w/ CL MR Prediction w/ Retraining MR Prediction w/ Original Model

ctf_dedup_mark_conflicting_hash ctf_add_align 0.20 ctf_add_cu_mapping 0.20 ungettoken_ungettoken

ctf_hash_eq_integer gnu_hash 0.25 ctf_hash_eq_string 0.75 mov_r11_r9_ungettoken

debug_make_static_member debug_make_new 0.50 debug_make_typed_constant 0.50 ungettoken_ungettoken

dwg_add_style dwg_add_ltype 0.67 dwg_add_layer 0.67 mov_rax_qword_ptr_[rsp+0xc0]

dwg_get_cellstylemap dwg_get_verte_d 0.67 dwg_set_acs_con_class 0.33 ungettoken_ungettoken

elfcore_write_ppc_vmx elfcore_write_ppc_tm_cvmx 0.75 stab_class_method_var 0.00 zn5clang4ento19

generate_abstrmethod generate_given 0.50 generate_free_list 0.50 ungettoken_ungettoken

hash_free_items hash_free 0.67 hash_flush 0.33 ungettoken_ungettoken

htab_create htab_try_create 0.67 htab_create 1.00 ungettoken_hfsplus

make_relative_prefix_ignore_links make_relative_prefix 0.60 find_in_path 0.00 zn5clang4ento19

md_process_bytes sha_process_bytes 0.67 sha_process_bytes 0.67 mov_rax_qword_ptr_[rsp+0xc0]

Rehearsal (Replay)-based CL. Another direction [8, 45, 69] uti-
lizes explicit model training on the previously learned data to alle-
viate catastrophic forgetting during the learning of new tasks. One
prominent version of this method is a generative replay [34, 66, 67]
technique which involves generating synthetic data that resembles
previously learned data, which is then used to train the model. On
the other hand, a distillation-based technique uses a teacher-student
approach, where the previously learned model acts as a teacher to
transfer its knowledge of the new model (i.e., student). Note that
we exclude this technique from our baselines due to two factors: 1
obtaining exemplars requires the original dataset where we assume
not to have access to it in our 2nd and 3rd scenarios and 2 creating
a separate generator model for assembly instructions poses chal-
lenges as assembly instructions are more sensitive compared to a
natural language.
Architecture-based CL. Houlsby et al. [26] introduce an archi-
tecture that is equipped with adapter layers (within Transformers)
that allow for parameter-efficient fine-tuning. Training the adapter
modules helps to avoid catastrophic forgetting by freezing the
pre-trained parameters of a model. Recent advances improve an
adapter-assisted technique [14, 35, 46, 73] by storing the adapter
layer tailored to a certain task and plugging it in during inference
on the fly. LoRA (Low-Rank Adaptation) [28] proposes an adapta-
tion to a new task efficiently (e.g., number of parameters, memory
utilization). In particular, LoRA inserts a module into Transformer’s
attention layers, achieving much less resource-intensive than in-
serting MLP adapters [26]. BinAdapter adopts the adapters.
ML-assisted Binary Reversing. A vast number of prior work
leveragesmachine learning techniques to assist binary reversing [23,
47, 49, 71], decompilation [15, 31, 32], variable and function name
prediction [9, 12, 24, 29, 43, 58]. Dire [43] proposes a variable name
prediction model based on LSTM (Long Short-Term Memory) [22]
and GNN [40] with an abstract syntax tree. Debin [24] introduces a
prediction system for debug information such as function and vari-
able symbols, which uses an Extremely randomized Tree classifier
and a linear probabilistic graphical model. NERO [12], similarly,
uses augmented representations of call sites with GNN to infer a

function name. This paper mainly focuses on the feasibility of CL
for function name prediction (e.g., incremental tokens on both the
source and the target) on top of AsmDepictor [39].

9 CONCLUSION

Binary reversing plays an essential role in addressing bugs or
crashes in the absence of source code, understanding the internal
behavior of binary code. Recent advances in deep neural networks
have focused on recovering (disappeared) high-level information in
the source, however, traditional static models struggle to handle the
continuous growth of binary datasets. In this work, we aim to infer
function symbol names using an incremental dataset that consists
of previously unseen assembly code and function names, by lever-
aging the cutting-edge CL techniques without CF. We introduce
BinAdapter, a system that can predict function names (i.e., target)
from a series of machine instructions (i.e., source), which incorpo-
rates both adapters and the M-NMT approach. We have developed
a prototype of BinAdapter, and conducted comprehensive experi-
ments to demonstrate its effectiveness and efficiency. Our empirical
results with several scenarios (e.g., new tokens either in the source
or the target) achieve an average performance improvement of up
to 24.3% compared to baselines.
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