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ABSTRACT

Reverse engineering of a stripped binary has a wide range of appli-
cations, yet it is challenging mainly due to the lack of contextually
useful information within. Once debugging symbols (e.g., variable
names, types, function names) are discarded, recovering such in-
formation is not technically viable with traditional approaches
like static or dynamic binary analysis. We focus on a function
symbol name recovery, which allows a reverse engineer to gain
a quick overview of an unseen binary. The key insight is that a
well-developed program labels a meaningful function name that
describes its underlying semantics well. In this paper, we present
AsmDepictor, the Transformer-based framework that generates a
function symbol name from a set of assembly codes (i.e., machine in-
structions), which consists of three major components: binary code
refinement, model training, and inference. To this end, we conduct
systematic experiments on the effectiveness of code refinement that
can enhance an overall performance. We introduce the per-layer
positional embedding and Unique-softmax for AsmDepictor so
that both can aid to capture a better relationship between tokens.
Lastly, we devise a novel evaluation metric tailored for a short de-
scription length, the Jaccard* score. Our empirical evaluation shows
that the performance of AsmDepictor by far surpasses that of the
state-of-the-art models up to around 400%. The best AsmDepictor
model achieves an F1 of 71.5 and Jaccard* of 75.4.
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1 INTRODUCTION

Reverse engineering (reversing) is a process of attempting to com-
prehend an unknown component or a product by dismantling or
reasoning it. Software is one of common applications for such
reversing because high-level semantic information has been dis-
carded (i.e., stripped) in an executable binary. Indeed, binary revers-
ing has a wide spectrum of applications including software copy-
right infringement [10], binary similarity detection [16, 26, 29, 79],
malware-related study [9, 11, 33, 40, 44], vulnerability discov-
ery [12, 13, 19, 23, 50, 54, 61, 71, 74], and digital forensics [57, 66].

However, reversing a stripped binary is non-trivial because it
holds a compact representation with machine code instructions,
causing fruitful information unavailable in source code like variable
names and types, function names and parameters, and structure
information. Even equipped with various automation tools (e.g.,
disassembler and decompiler in Figure 1), a binary reversing task re-
quires experts’ knowledge, skills, and insights with tedious manual
efforts [53]. Decompilation is one of popular means to deduce the
behavior of a binary by transforming an assembly to a high-level
language, however, it still lacks syntactic and semantic informa-
tion. In general, the contextual recovery from the absence of such
information is technically yet viable with traditional approaches
like static or dynamic binary analysis.

In response, recent advancements borrow the idea of natural lan-
guage processing (NLP) for binary analysis, training an inference
model via a deep neural network (DNN). DEEPVSA [28] proposes
a novel approach that can improve the capability of a value set
analysis (VSA) with a sequence-to-sequence DNN by inferring a
memory region that VSA fails to identify. Structure2vec [54] sug-
gests an automated feature extraction from a control flow graph
(CFG), applying it to a binary similarity detection task. Another
noticeable direction is to reconstruct debugging symbol informa-
tion in a stripped binary, including a variable name [14, 30, 45], a
variable type [14], and a function name [17, 25, 30]. It is noted that
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a binary-oriented approach differs from a source-centric one like
source code summarization [3, 4, 15, 77] in that the former must
handle machine-interpretable code. Dire [45] leverages a decom-
piler’s internal abstract syntax tree (AST) representation to recover
a variable name. Similarly, Debin [30] targets the recovery of both
symbol names and types. Close to our work, NERO [17] predicts
procedure names by utilizing enriched representations of call sites,
and SymLM [36] models the execution behavior of a calling context
and instructions; however, the main downside is that it requires a
call invocation. Similarly, NFRE [25] proposes a lightweight frame-
work that reassigns a function name with a better performance
than Debin [30] and Nero [17]. DIRTY [14] infers variable types and
names based on Transformer [75], aiding further binary reversing.
Yet, none of the above approaches thoroughly studies the properties
of an assembly language (as data), and carefully considers those
characteristics in designing a DNN model.

In this paper, we present AsmDepictor that allows for inferring
an original function symbol by directly learning from an assembly.
Inspired by InnerEye [82], we view this problem as a translation
from an assembly language to a natural language that describes
a function. The translation differs from a summarization task in
that the former generates a series of outputs in another language
whereas the latter in the same one. Another key insight behind this
setting is that a function symbol name of a well-developed program
often follows a meaningful label that well describes its underlying
semantics. It would be greatly beneficial for a reverse engineer to
quickly delineate the basic intent of an unseen binary with a list of
(reliably) inferred function symbol names since a binary typically
contains multiple binary functions (§3.2).

AsmDepictor consists of three main components that deal with
data refinement, model training, and a practical inference engine for
fulfilling our objective. To the best of our knowledge, we first con-
duct systematic experiments on the effectiveness of binary codes’
normalization and tokenization (for a better representation) be-
fore feeding them into an actual neural network. In essence, our
empirical finding shows that the best data refinement strategy is to-
kenizing an assembly code solely with the byte-pair encoding (BPE)
algorithm [69], and without any code normalization. We observe
that BPE can indeed address a known vocabulary problem (e.g.,
out-of-vocabulary) as proposed by Karampatsis et al. [37]. Second,
we adopt Transformer that fits well on our sequence-to-sequence
neural machine translation (i.e., predicting a function symbol name
from a set of machine instructions). To enhance the performance of
the AsmDepictor model, we introduce the following techniques
with Transformer: 1○ a per-layer positional embedding scheme in-
stead of utilizing a positional encoding from the naïve Transformer
architecture, and 2○ the Unique-softmax activation function that
assists to capture better relationship of tokens, and 3○ layer reduc-
tion (e.g., from six to three layers) that prevents attention values’
diminishing at the upper layers. It is noteworthy mentioning that
the above design choices are indeed based on our thorough ex-
periments for a better data representation in practice. Besides, we
devise a novel evaluation metric, dubbed the Jaccard* score, which
is specialized in a short output generation task (a function symbol
typically consists of a limited number of words) by considering both
an order and a brevity penalty. Third, the AsmDepictor inference
engine can produce a list of candidate function symbol names as

well as a predicted one because, by nature, a sequence of assembly
instructions possibly maps into multiple functions. We maintain
such function candidates at the time of data refinement.

Our experiments demonstrate that AsmDepictor outperforms
the state-of-the-art baseline models (e.g., Debin [30], NERO [17]), by
a wide margin (i.e., up to four times better performance). Besides,
AsmDepictor achieves an F1 of 71.5 (i.e., accurately predicting
seven out of 10) with a large volume of dataset (around 520𝐾 func-
tions). The main contributions of our work are as follow.

• We propose AsmDepictor, the full-fledged Transformer-based
framework that assists binary reversing, which can infer a func-
tion symbol name from an assembly language.
• We systematically explore a better data representation means (i.e.,
normalization and tokenization) of both an assembly code (input)
and a function symbol (output) for further efficient learning.
• We introduce two main ideas for building AsmDepictor: per-
layer positional embedding and Unique-softmax to enhance over-
all model performance.
• We devise a model evaluation metric, Jaccard* tailored for a short
output (e.g., function name) generation task.
• We thoroughly evaluate the practicality and effectiveness of
AsmDepictor, demonstrating that our model by far surpasses
state-of-the-art baseline models.

We have open-sourced AsmDepictor 1 to foster further research
in the domain of binary analysis with a deep neural network.

2 BACKGROUND

Encoder-decoder Architecture. A recent advancement to handle
variable-length (end-to-end) input and output texts is an encoder-
decoder architecture [7, 51], which is particularly suitable for a
machine translation task (e.g., producing an output by taking an
arbitrary size of an input). Transformer [7] leverages the encoder-
decoder architecture at its core implementation into sequence-
to-sequence transformations. Unlike prior recurrent neural net-
work (RNN) models, technical enhancements like multi-head self-
attention and positional encoding in Transformer enable one to cap-
ture long-range dependencies. The main component of Transformer
is a scaled dot-product attention: Attn(𝑄,𝐾,𝑉 ) = softmax(𝑄𝐾

𝑇

√
𝑑𝑘
)𝑉

where (𝑄 , 𝐾 , 𝑉 ), and 𝑑𝑘 denote (queries, keys, values) matrices and
the scaling factor of a dimension, respectively. Notably, multiple
heads contain different projections (i.e., mapping between 𝑄 and
𝐾𝑉 pairs) to capture the relationship between words within a sen-
tence. An encoder-decoder architecture learns both the semantics
of an input (e.g., machine instruction) within an encoder and that
of an output (e.g., function symbol) that is associated with the input
within a decoder, rendering a translation task possible (i.e., multi-
head attention). Besides, the structure allows for parallel computa-
tion on GPUs, making it scalable to build a model on a real-world
dataset, rising the popularity of Transformer-based architectures
such as GPT (Generative Pre-trained Transformer) [64] and BERT
(Bidirectional Encoder Representations from Transformers) [20]. In
this regard, we harness Transformer for our sequence-to-sequence

1https://github.com/agwaBom/AsmDepictor
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transformation task that predicts a function symbol name from
machine instructions.
Approaches for a Position Representation. The position of
a word is one of the significant factors to deduce the contextual
meaning of a sentence in the area of NLP. The main approaches
to represent a position in a neural network are through either a
positional encoding or a positional embedding. One approach that
represents positional information is to assign a hard-coded value to
a position in a sentence. For example, the original Transformer [75]
utilizes an absolute sinusoidal value to each token in a sequence. An-
other approach that indicates a position is a positional embedding
by learning it (i.e., learned positional encoding) while training. For
instance, BERT [20] adopts a positional encoding scheme via learn-
able parameters. In this paper, we harness a positional embedding
for better expressiveness.
Byte-Pair Encoding. The design of the BPE [69] algorithm orig-
inates from data compression. Simply put, BPE segments a word
into frequently appearing subwords as follow: 1○ seeking a con-
secutive character pair, 2○ defining the pair as another character
(i.e., byte pair), 3○ replacing the pair with the new character, and
4○ iteratively performing 1○ - 3○ with a parameter. To exemplify,
“playing” can be split into “play@@” and “ing” when the subword
“ing” frequently re-appears in a training set. Lately, BPE has been
applied to the domain of NLP to tackle an OOV (out-of-vocabulary)
problem due to the enormous size of vocabularies. Karamptsis et
al. [37] demonstrate that BPE could properly handle an extremely
large and sparse vocabulary (e.g., millions of unique tokens) as well
as OOV when building open-vocabulary models for source code on
a large scale. To the best of our knowledge, we first adopt BPE to
an assembly language.
Evaluation Metrics for Generative Models. The two widely
adopted metrics for a language generation model have been in-
troduced to evaluate how a machine-translating sentence is close
enough to a human speech or writing: BLEU (Bilingual Evaluation
Understudy) [58] and Rouge-l (Recall-Oriented Understudy for Gist-
ing Evaluation) [49] scores. A BLEU score calculates the occurrence
of matching words (i.e., n-gram) in the candidate translation over
the reference sentence irrespective of the order of words. Mean-
while, a Rouge-l score measures the longest matching sequence
of words using the longest common subsequence (i.e., recall), cap-
turing its appearance in the reference sentence. In this respect,
generating as many matching words as possible achieves a high
BLEU while predicting a long matching sequence leads to a high
Rouge-l. However, both BLEU and Rouge-l scores are inappropriate
for assessing a relatively short sequence of words (e.g., function
identifier), proposing the Jaccard* score for our purpose (See §4.3).

3 FUNCTION SYMBOL INFERENCE FROM

ASSEMBLY CODE

3.1 Problem Definition and Goal

Problem Definition. We informally define a machine code (i.e.,
assembly language) description problem as inferring an original
function symbol that best describes its behavior from machine in-
structions (i.e., assembly) within a function boundary in a stripped
binary. Note that we employ a common term of a “function symbol”

as part of debugging symbols that are available in the symbol table
of a non-stripped binary, indicating a function identifier (name)
from a source. In this paper, we use those terms interchangeably.
Goal. The objective of a function symbol name inference is to
quickly portray the intent of an unseen binary by delineating a
chunk of instructions at the binary function level, which aids further
binary reversing. To this end, we borrow the concept of a language
translation for learning a function symbol name corresponding
to an assembly code. Note that a translation is a communication
between a source (machine code) and a target (natural language).
In this paper, we harness the Transformer architecture [75] that has
lately achieved great success on neural machine translation tasks.
Assumption. The two key insights are that 1○ a well-developed
program that maintains a function label that describes a code snip-
pet well, and 2○ the transformation from an assembly to a func-
tion identifier well fits into another neural machine translation
application because the distribution of the language follows the
Zipf’s law [62] like Figure 7 in Appendix. Oftentimes naming a
function follows its convention [78], which allows one to read and
understand source code using a handy rule such as multiple-word
identifiers. For instance, one may utilize delimiter-separated words
like an underbar (i.e., snake case; e.g., get_user_groups), or case-
separated words that indicate word boundaries with medial capital-
ization (i.e., camel case; e.g., getUserGroups). We presume that a
binary has been compiled with a high optimization level (i.e., -O2 or
-O3) because taking a low optimization level (e.g., -O0 or -O1) has
been rarely seen in practice. Our experiment utilizes the x86-64 as-
sembly language for Intel 64-bit processors. Recognizing a function
relies on a reversing tool such as IDA Pro [2], angr [72], Radare [63],
and Ghidra [56]. A function boundary identification problem in a
binary [5, 6, 8, 43, 70, 76] is beyond the scope of this paper.

3.2 Demonstrative Example

The essence of binary reversing lies in an in-depth comprehension
via the analysis of an unseen binary, inferring the contextual se-
mantics of a program at a high level rather than evaluating every
single instruction. Albeit varying automation tools for reversing
such as a disassembler, unpacker, emulator, binary similarity detec-
tor, or decompiler, it still requires expertise knowledge with tedious
manual efforts. Figure 1 illustrates how our approach could assist
in reversing a binary. In a nutshell, we leverage a neural machine
translation technique to generate a model to predict a function
symbol from learned machine instructions. The example demon-
strates that a reversing practitioner could gain a quick glimpse of
a binary with a list of (inferred) function symbols ( 3 in Figure 1).
A binary analysis tool represents a sequence of machine instruc-
tions with a function boundary (e.g., IDA [2]). Intuitively, the actual
function symbol, ipc_sem_free_info, can offer better contextual
information for FUN_00108d70 (mechanically generated by e.g.,
Ghidra [56]) although the decompiler [68] provides a high level
code in the C programming language ( 2 in Figure 1).

3.3 Challenges

Refining data (i.e., pre-processing an assembly) is one of the most
significant tasks for generating a model that expects the best perfor-
mance [73]. Unlike generating a translation model in NLP, a set of
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❶ Assembly Language (with IDA)

0x8D70  endbr64
0x8D74  test    rdi, rdi
0x8D77  jz short locret_8DB0
0x8D79  push    rbp
0x8D7A  push    rbx
0x8D7B  mov     rbx, rdi
0x8D7E  sub     rsp, 8
0x8D8E  nop word ptr [rax+rax+00h]
0x8D88  mov     rbp, rbx
0x8D8B  mov     rdi, [rbp+38h]
0x8D8F  mov     rbx, [rbx+40h]
0x8D93  call    _free
0x8D98  mov     rdi, rbp
0x8D9B  call    _free
0x8DA0  test    rbx, rbx
0x8DA3  jnz short loc_8D88
0x8DA5  add     rsp, 8
0x8DA9  pop     rbx
0x8DAA  pop     rbp
0x8DAB  retn

❷ Decompiled code for reversing (with 
Ghidra)

void FUN_00108d70(void *param_1) {
void *pvVar1;
if (param_1 == (void *)0x0) {
return;

}

do {
pvVar1 = *(void **)((long)param_1 + 0x40);
free(*(void **)((long)param_1 + 0x38));
free(param_1);
param_1 = pvVar1;

} while (pvVar1 != (void *)0x0);

return;
}

❸ Function Symbol

make_time

close_stdout
get_sem_elements
ipc_msg_get_limits

...

...

size_to_human_string
string_to_idarray
string_add_to_idarray

get_gmtoff

while (semds) {
struct sem_data *next = semds->next;
free(semds->elements);
free(semds);
semds = next;

} ❹ Source 
code

get_groupname

ipc_sem_free_info

parse_sec

Figure 1: Illustrative example of a typical binary analysis. Given an unseen binary, a reverse engineer often utilizes a disassembler

(e.g., 1 IDA [2]) or a decompiler (e.g., 2 Ghidra [56]) to deduce the underlying semantics of the source codes (e.g., 4 ). If one
could obtain a list of function symbols within the binary close to the ground truth, it would be considerably fruitful for further

analysis. We aim to generate such a model to directly learn 3 a function symbol (available from debugging information) from

an assembly language ( 1 ) like a natural language translation, aiding to quickly infer the contextual meaning of a binary. In

this example, the actual function symbol for FUN_00108d70 from the decompiled code ( 2 ) is ipc_sem_free_info.

input vocabularies from machine instructions encompasses a vast
number of words as well as immensely sparse ones. In an assembly
code, the operand of call or jmp family instructions represents
an absolute address or a relative offset of a target for invoking a
function or being jumped to. Similarly, an immediate value contains
a constant that is loaded into a memory/register for performing an
arithmetic/logical operation. Considering a huge number of such
possible operands and immediate values (e.g., four billion with four
bytes), computing every word as a token would be not only pro-
hibitively expensive but also suffering from an OOV problem (i.e.,
training all words beforehand is not possible) and rarely appeared
words (i.e., meaningful embedding updates are failed due to the in-
sufficient number of appearances) [37]. This problem must be taken
into account for an output language because a software developer
can create an arbitrary function identifier.

4 ASMDEPICTOR DESIGN

4.1 Design Overview

Figure 2 illustrates an overall workflow of AsmDepictor, which
comprises three modules.
Data Refinement. A set of machine instructions (i.e., assembly) in
a function provides an accurate description of a certain task per-
formed by a processor. Although learning an assembly as it stands
may offer rich information (presumably the richest) for building a
model, it is quite impractical because a means of vectorization per
instruction not only requires too much computational resources,
but also suffers from meaningful embedding generation due to both
OOV and sparse instructions as stated in §3.3. Recall that we aim to
deduce a function symbol (like a debugging symbol available from
a non-stripped binary). Thus, it is essential to transform machine
codes to an appropriate form for training a model with them by
striking a balance between holding a substantial amount of infor-
mation of machine codes and tackling the issues of both sparsity

get user groups [EOS]

close stdout [EOS]

set program name [EOS]

① Data refinement (pre-processing)
Executables
(Corpus)

Assembly Code De-duplication

LAYER 1

LAYER 2

LAYER 3

LAYER 1

LAYER 2

LAYER 3

Refined
Functions Encoder Decoder

Softm
ax

② Translation model training and evaluation

Transformer-based Model

Unseen
Binary

Jaccard*
score

sub_rsp_0xd8, mov_qword_ptr_[rsp+0x30]_rdx,…à xasprintf
endbr64, push_r15, mov_r15d_ecx, push_r14, …à cpulist_parse
push_r12, mov_r9_qword_ptr_[r@@ di+0x18],  …à get_absdir

Generating a list of tokenized function symbols

③ Function symbol inference for reversing

BPE Tokenization

get_user_groups [EOS]

close_stdout [EOS]

set_program_name [EOS]

Figure 2: Overall workflow of AsmDepictor. In preparation

for training, we 1○ refine machine instructions (input) and

function symbols (output) from a corpus (§4.2). We 2○ build

a Transformer-based generative model and assess it with

our Jaccard* score (§4.3). The model 3○ predicts a function

symbol, aiding a binary reversing task (§4.4).

and OOV in practice. Besides, we should take duplicate function
bodies into account because they hinder appropriate learning (e.g.,
a generative model may be confusing when encountering differ-
ent function symbols with the same function body). We adopt a
data refinement process including function de-duplication and BPE
tokenization per instruction with thorough experiments (§4.2).
Model Training. Our initial attempt with the naïve Transformer
(using the pre-processed dataset with previous normalization ap-
proaches) failed to train a model. We discover that a code normaliza-
tion inadvertently encounters a case to barely see any relationship
between instructions on the upper layers of Transformer (Interested
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readers refer to Figure 8 in Appendix). For example, replacing 64-bit
registers (e.g., rax, rcx, r9) with a symbol that represent a 64-bit
register (e.g., reg8) [80] can produce consecutively identical words
in a function prologue or epilogue (e.g., pop reg8, pop reg8). To
this end, we establish a handful of strategies for efficiently learn-
ing a function symbol from an assembly (§4.3) by 1○ reducing the
number of layers (from six to three), 2○ introducing a per-layer
positional embedding for better expressiveness, and 3○ devising an
activation function dubbed Unique-softmax.
Function Inference. Once a model is ready, we can deduce a
function symbol by taking a sequence of (disassembled and BPE-
tokenized) machine codes as an input. Then, the model generates an
output ending with the <EOS> token (i.e., special token for the end
of a sentence). As a produced output often contains a short number
of words, we devise an evaluation metric, the Jaccard* score (§4.3).

4.2 Assembly Codes Refinement

Function De-duplication. Our finding shows two common cases
as follow: 1○ the identical function body with different function
symbols, and 2○ the identical function identifier with different
function bodies. The former case is often shown when one can label
a function with a similar (or the same) procedure, or a function that
reduces a relatively short routine after compiler optimizations (e.g.,
approximately 22% as in Table 1), which aligns with the observation
in NFRE [25]. For example, we observed a few samples that a single
function body maps to more than a thousand function symbols
in our dataset, which consists of a small number of tokens. In the
latter case, we randomly include one of the function identifiers
and its function body for training while excluding others because
this assists to learn varying patterns of a single function symbol
(in terms of code semantics) by exposing different function bodies.
Note that we maintain a mapping between the selected function
symbol (as a key) and other symbols (as a value) so that they could
be part of an inferred output (Table 6).
Code Normalization and Tokenization. In essence, taking an as-
sembly code to a neural network requires to handle three main
vocabulary issues: 1○ total number of vocabularies, 2○ out-of-
vocabulary problem, and 3○ sparse vocabulary problem. Hence,
transforming an instruction into an appropriate form is essential
because it serves a basis for vectorizing instructions as an internal
data representation. Prior work [48, 55, 80, 82] pre-process an as-
sembly language with in-house rules before feeding it into a neural
network. Hereinafter, we call such an overall conversion code re-
finement that includes code normalization and tokenization. With
extensive experiments for such normalization and tokenization
techniques (§A.2 in Appendix), we conclude that the best choice to
handle the vocabulary issues while keeping a performance is the
strategy of BPE tokenization without code normalization. It is noted
that we merely separate word boundaries without BPE for function
symbols with an underbar (snake case naming) or a medial capital
(camel case naming).

4.3 AsmDepictorModel

Per-Layer Positional Embedding. A human can understand the
meaning of a sentence even if the words in the sentence are scram-
bled. However, in assembly, the order of machine instructions (e.g.,

cb_build_program_id [EOS]

Add & Normalize

Add & Normalize

Feed Forward

Per-Layer Positional Embedding

Unique-softmax

𝑄𝑢𝑒𝑟𝑦 ∙ 𝐾𝑒𝑦𝑇 Weight Calculation

Layerwise High Variance Output

M
u
lti

H
ead

A
tten

tio
n

push_rbp mov_rbp_rsp sub_rsp_0x4# ...

Layer 3

Linear

Layer 2

Layer 1

Layer 1

LAYER 2

Layer 3

Layer 2

Softmax

E
n
co

d
e
r

D
e
co

d
e
r

E
a
ch

 L
a
y
e
r

Output

Input

Figure 3:AsmDepictor architecture that consists of a stacked

Transformer-based encoder and decoder. We adopt a per-

layer positional embedding (at encoders) for learning the po-

sitional representation of an assembly, and aUnique-softmax

function (at both encoders and decoders) for better quality

of vectors per each layer, leading a high performance on a

function symbol inference task.

topological order in a control flow graph) plays a crucial role in pre-
cisely performing a desirable task. Hence, providing high-quality
positional information is needed to make a model better under-
stand the pattern of a sequence of instructions. To this end, we
adopt an absolute positional embedding of BERT [35] instead of a
sinusoidal positional encoding in vanilla Transformer. Unlike BERT
that applies a positional embedding only before the first layer of
an encoder layer, we introduce a per-layer positional embedding,
providing a positional representation at each layer of the encoder
layer to prevent the disappearance of positional information on
the upper layer. Figure 4 illustrates how positional information is
added to each encoder layer. It is noted that positional information
is not included as Transformer can learn it by itself [34, 67] in a
decoding phase (i.e., masking effect).
Unique-softmax Function. One of common characteristics in
NLP is a frequent appearance of stop words [22] like articles (e.g., ‘a’,
‘the’, ‘of’), which conveys little contextual meanings (thus often ig-
nored). Although a functionmay include a few instructions that stay
away from the original context like the nop operation (at the address
of 0x8D8E in Figure 1), each instruction represents a valid operation.
The softmax function in Transformer calculates attention values
between tokens that take a product of a query and key vectors,
dividing it by the sum of its elements, softmax(𝒙𝑖 ) = exp(𝒙𝑖 )∑𝑛

𝑗 exp(𝒙 𝑗 )
where 𝒙 is the input vector (i.e., product of a query and key vectors
in Transformer), and 𝑛 is the size of the vector (i.e., the number
of tokens). Because of layer normalization and scaling by Softmax
in Transformer (Figure 3), it becomes common to remain a few
values to be large and the rests to be extremely small. This results
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Figure 4: Illustration of a per-layer positional embedding

in AsmDepictor. Unlike vanilla Transformer which takes

positional embedding (P) at the first layer only, we provide an

additional positional embedding (dotted area) to the upper

layers. P, T, and R denote a position, token, and (internal)

representation encoding, respectively.

in restricting the capability of understanding the relationships be-
tween tokens. Figure 8 in Appendix shows an attention heatmap of
each transformer layer, which supports that utilizing the softmax
function renders the attention values between tokens considerably
fainted in the upper layers like Figure 8a, Figure 8b, and Figure 8c.
To address the above dimming issue, we suggest the Unique-softmax
function. It normalizes the input tokens by grouping similar tokens
in the input vector, then dividing each by the sum of unique values
(e.g., Figure 8d): Unique-softmax(𝒙𝑖 ) = exp(𝒙𝑖 )∑𝑑

𝑗 exp(𝒖 𝑗 )
where 𝒖 is the

vector that holds a unique value among 𝒙 , and 𝑑 is the size of 𝒖
vector. The denominator of Unique-softmax function is less than or
equal to that of the softmax because it does not add the same value
multiple times:

∑𝑑
𝑗 exp(𝒖 𝑗 ) ≤

∑𝑛
𝑗 exp(𝒙 𝑗 ). Therefore, the output

of Unique-softmax is higher than that of the softmax by following
𝑑 value. To find a similar value in a vector, we round up values to
the parameter 𝑟 . Figure 5 shows an example of the Unique-softmax
function (See algorithm 1 in Appendix).
Jaccard* Score. One of the widely adopted metrics to evaluate
a language generation model is the BLEU score [58]. As shown
in Table 1, directly applying BLEU to a short output (e.g., an average
token length is around three) is inappropriate because it gives
an excessive brevity penalty within a short sequence of tokens.
Considering such a concise output, one can simply catch the original
meaning from an inferred function symbol without taking an order
into account; e.g., make time from time make. However, such an
order-agnostic metric could falsely drive a model to deduce a long
sequence of words that encloses the ground truth as a subset; e.g.,
make size info time build get where its reference text is
make time. To this end, we devise the order-free Jaccard* score that
enables one to effectively evaluate a short sequence of words (i.e.,
function symbol). In particular, we suggest the factor of a negative
brevity penalty (𝑁𝐵𝑃 ) to prevent generation toward a superset of
the ground truth, which the penalty begins to be applied when the
number of predicted words is longer than that of reference words.
Equation 4.3 briefly shows the proposed Jaccard* score tailored for
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①

Figure 5: Illustration of Unique-softmax activation function.

A query vector with each key vector in a sentence computes

a final attention value. Two consecutively identical instruc-

tions (e.g., 1○ and 2○) or even different instructions (e.g., 2○
and 3○) produce the same attention outputs after round up

as shown in a dotted square box.

evaluating a short output generation task where 𝐻 and 𝑅 represent
a set of inferred words and reference words, respectively.

Jaccard* = 𝑁𝐵𝑃 × |𝑅 ∩ 𝐻 ||𝑅 | , 𝑁𝐵𝑃 =

{
1 if |H| ≤ |R|
exp (1 − |𝐻 ||𝑅 | ) otherwise

4.4 Function Symbol Inference

Once a model training is complete, AsmDepictor is ready for in-
ferring a function symbol given a sequence of machine instructions
(e.g., function) as an input. It is noted that the input requires to
be refined via both disassembly and BPE tokenization process. As
in Figure 3, fetching an instruction embedding and its positional
embedding from the model, an encoder calculates attention val-
ues within the sequence of an assembly (i.e., inputs’ relevance),
passing it to a decoder. Finally, the decoder computes attention
values using both the token embedding of a decoder and that of
an encoder-decoder (applying no positional information at this
moment), predicting a word with the highest probability with a
softmax layer and uses a beam search [22] to output a predicted
token. We repeat this process until the model predicts [EOS].

5 IMPLEMENTATION

Binary Build and Analysis. We leverage the built-in IDAPython
[31] from IDA Pro 7.6 [2] to analyze each binary, building a data-
base that contains individual binary information for further refine-
ment (e.g., code normalization, de-duplication, tokenization). We
utilize debugging information for extracting function boundaries
(i.e., function start and end) and symbol names as ground truth.
The original NERO dataset [18] (DSN) has been released with de-
bugging sections being present. Meanwhile, we build additional
binaries with debugging information available in preparation for
theAsmDepictor dataset (DSA), by leveraging apt-build [1] that
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automatically retrieve sources and rebuild a list of common pack-
ages from popular Ubuntu Linux distributions. For the comparison
of code refinement techniques (§6.1), we implemented our own
script that follows a handful of rules on immediate values, registers
and pointers, proposed by DeepSemantic [42], InnerEye [82], and
PalmTree [48]. Note that we apply BPE tokenization on top of a
raw assembly for building a vocabulary.
Model Implementation. With a skeleton of the original Trans-
former implementation [7] and PyTorch [59], we develop the frame-
work AsmDepictor that supports both per-layer positional em-
bedding and Unique-softmax techniques (§4.3). Unlike NLP that
varying pre-trained models are prevalent, the model for binary
codes is not commonly available. Then, we initialize our model with
Xavier [27], taking around 179 hours (around seven and half days)
to train the AsmDepictor model using DSA (§6) with 40, 004, 102
parameters. As the size of a Transformer model grows exponen-
tially according to the length of (sequential) input tokens, we set
up a token length limit to 300; that is, we discard all tokens longer
than the limit. We use a scheduled Adam optimizer with 𝛽1 = 0.9,
𝛽2 = 0.98 and 𝜖 = 10−9 as proposed by the original Transformer.
However, we reconfigure a warmup step and a multiplication factor
to (24, 000, 0.8) for DSN [18] and (18, 000, 1.0) for DSA, respectively,
because they are affected by the batch size and the data length of a
model. We set up the batch size of 10 and 90 for DSN and DSA. We
use a dropout rate of 0.1 after Attention and Feed-Forward. As a
final note, we display primary hyperparameters that impact overall
performance in our repository1.

6 EVALUATION

This section evaluates AsmDepictor by answering four research
questions about effectiveness and efficiency. We run experiments
on a 64-bit Ubuntu 20.04 system equipped with Intel(R) Xeon(R)
Gold 5218R CPU 2.10GHz, 256GB RAM, and two RTX A6000
GPUs. Note that we utilize DSN for verifying the effectiveness
of a AsmDepictor model, and a common Rouge-l metric for handy
comparison.
Program Corpus. We harness two different datasets for evalua-
tion. First, we utilize DSN [18] that is a publicly available corpus,
enabling AsmDepictor to make a direct performance comparison
with other state-of-the-art baselines [17, 30]. We additionally build
2, 522 executable binaries (ELF for x86_64 architecture) with debug-
ging information available, including system utilities, networking
tools, and varying libraries across four different Ubuntu Linux dis-
tribution versions (i.e., 14.04, 16.04, 18.04 and 20.04). The common
packages across different distributions incorporate different ver-
sions of a program, which helps efficient model training. Note that
we exclude a function symbol that complies with a name mangling
rule (e.g., C++) because a compiler-generated function identifier
may bring about degrading a model performance. We have DSA
include DSN to see performance improvement on a large scale. As
shown in Table 1, DSN includes 84, 433 functions from 541 binaries
whereas DSA holds 520, 532 functions from 3, 063 binaries. We ex-
cluded 16, 767 (19.85%) and 116, 326 (22.35%) functions that have
an identical body but a different symbol name as well as the ones
that have the same body and name (i.e., de-duplication as part of
data refinement), acquiring 67, 666 and 404, 206 functions in each
corpus (§4.2). Interestingly, the volume of vocabularies for DSN

Table 1: Statistics for DSN and DSA. The number of vocabu-

laries with BPE for DSA is quite similar (slightly smaller) to

that for DSN.

Statistic DSN DSA

Number of binaries 541 3,063
Number of function symbols 84,433 520,532
Identical function bodies 16,767 116,326
Identical function symbols 53,902 430,310
Final corpus (de-duplicated) 67,666 404,206

Number of a training set 54,134 323,364
Number of a test set 13,534 80,842
Token (Function) length on average 135.04 204.24
Token (Symbol) length on average 2.55 3.01
Number of vocabularies with BPE 9,958 9,923

(9, 958) is slightly larger than that for DSA (9, 923) after applying
BPE to assembly codes although the latter holds almost six times
larger function symbols than the former.
Research Questions.We raise the following research questions
for AsmDepictor evaluation from four aspects: 1○ data refinement
strategy, 2○AsmDepictormodel approaches, 3○ performance com-
parison with examples, and 4○ efficiency of the models.
• RQ1. How much improvement does our suggested data refine-
ment strategy contribute to performances (§6.1)?
• RQ2. How much enhancement does our proposed techniques
contribute to performances (§6.2)?
• RQ3. Does AsmDepictor surpass other state-of-the-art baseline
models for generating a function symbol (§6.3)?
• RQ4. How efficient is AsmDepictor in practice (§6.4)?

6.1 Effectiveness of Code Refinement (RQ1)

Binary code (as data) pre-processing is commonplace [42, 48, 55,
80, 82] before learning a model due to vocabulary issues, however,
its effectiveness has hardly been evaluated yet. To the best of our
knowledge, our work is the first study to make a systematic assess-
ment for the validity of binary code refinement quantitatively.
Code Normalization. Normalizing an assembly code is an in-
formal process of trimming seemingly-less-useful-information to
mainly reduce the number of vocabularies before feeding it into a
neural network. We conduct an experiment with the NERO [17]
dataset to demonstrate the effectiveness of a few code normaliza-
tion techniques, which prior work [42, 48, 55, 80, 82] has introduced.
DeepSemantic [42] suggests the well-balanced code normalization
that converts the representation of registers, pointers, and imme-
diate values into a generalized form to reduce the number of vo-
cabularies. As the baseline with the DeepSemantic rules, we adopt
other approaches such as retaining a register from InnerEye [82]
(e.g., reg8→ rax), and a two-byte immediate value proposed by
PalmTree [48] (e.g., immval→ 0x36), which can offer supplemen-
tary information for further learning. Table 8 summarizes the com-
parison between a combination of several code normalization tech-
niques, empirically confirming that feeding additional information
aids to enhance overall performance. Note that the case with raw
assembly codes show the best performance (F1 of 57.67 or Jaccard*
score of 60.67). However, the size of model parameters must be
considered as the volume of dataset increases (Table 2).
Tokenization.We investigate various tokenization means in terms
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Table 2: Comparison of the size of parameters and vocab-

ularies depending on different tokenization methods. The

volume of model parameters grows in accordance with that

of vocabularies. In case of DSA, the number of parameters

exceeds 1 billion where the number of tokens is 3.25 million.

BPE tokenization can appropriately adjust both the size of

parameters (around 40M) and vocabularies (below 10K).

Tokenization DSA DSN
Methods Param Size Vocab Size Param Size Vocab Size

Instruction 1,012,857,350 3,253,394 222,776,838 699,970
Instruction w/ 𝐷𝑈 628,541,958 2,359,047 162,619,398 563,036
Instruction w/ 𝐷𝑈𝑆 521,095,174 2,150,998 138,883,590 536,832
Instruction w/ BPE 40,004,102 9,923 32,251,910 9,958

of both assembly codes (input) and function symbols (output). We
conduct another experiment with four groups for an instruction and
three groups for a function symbol to choose the best tokenization
strategy (See Table 10 for examples). For an assembly code, we
1○ set up a raw machine instruction as a baseline. Next, we 2○
separate an instruction with the delimiter of an underscore (𝐷𝑈 ),
and 3○ take special characters (e.g., [,],+,-, *) apart as well as
an underscore (𝐷𝑈𝑆 ). Finally, we 4○ apply BPE [69] as suggested
by Karampatsis et al. [37]. For a function symbol, we 1○ configure a
full function identifier as a baseline. We 2○ apply a word separation
with the delimiter of a snake case (i.e., underscore) and a camel case
(𝐷𝑈𝐶 ), and 3○ BPE. Table 9 summarizes experimental results of 𝐹1
and Jaccard* score with DSN. Interestingly, our empirical finding
shows that a function symbol with BPE exacerbates an overall
performance, and the combination of an intact instruction and a
function symbol with 𝐷𝑈𝐶 ranks the first of all groups (i.e., 𝐹1 of
57.67 and Jaccard* score of 60.67). Based on our experimental results,
we choose a tokenization strategy of BPE with assembly codes and
𝐷𝑈𝐶 with function symbols forAsmDepictor that strikes a balance
between model scalability and model performance, resulting in
𝐹1 of 57.14 and Jaccard* score of 60.26. As seen in Table 2, the
size of model parameters generally grows in proportion to the
number of vocabularies. The strategy of BPE tokenization for an
instruction maintains a balance of both the volume of parameters
(approximately 40M) and vocabularies (below 10K) even for DSA.

6.2 Effectiveness of AsmDepictor (RQ2)

Layer Reduction. The original Transformer employs the archi-
tecture with a stack of six encoders and decoders. However, we
encounter that building a model with the naïve Transformer had
been consistently failed with previous code normalization tech-
niques. Our investigation reveals that scaling (e.g., softmax, layer
normalization) causes vanishing attention values, extracting mean-
ingful relationships between tokens (i.e., instructions) unavailable.
Figure 8a in Appendix illustrates that the uppermost layer indeed
barely sees the relationship between instructions. In this respect,
we reduce the number of layers (e.g., three layers in AsmDepictor)
at both encoding and decoding components, obtaining an additional
F1 of 5.6 and Jaccard* score of 4.4 (Table 5).

Table 3: Performance comparison according to different

strategies for holding positional information. An embed-

ding scheme is way better than an encoding one.

Strategy Precision Recall F1 Rouge-l Jaccard*

Positional encoding (Transformer) 38.53 41.30 37.21 39.58 41.92
Positional embedding (BERT) 55.77 56.00 55.83 57.75 59.77
Per-Layer positional embedding 57.13 57.17 57.14 58.68 60.26

Table 4: Performance comparison across different activation

functions. Unique-softmax achieves the best performance in

all metrics.

Activation Function Precision Recall F1 Rouge-l Jaccard*

Sigmoid 53.32 54.22 53.60 56.30 57.91
Softmax 53.90 54.19 53.97 56.45 57.75
Unique-softmax 57.13 57.17 57.14 58.68 60.26

Table 5: Ablation results of AsmDepictor over our proposed

approaches. We use Transformer with a BPE-encoded assem-

bly as a baseline. Taking all techniques together enhances

overall performance up to around 10 in all metrics.

Applied Techniques Precision Recall F1 Rouge-l Jaccard*

Transformer (T) 47.31 47.80 47.46 50.74 50.12
T + Layer Reduction (LR) 53.22 53.79 53.10 53.31 54.48
T + LR + Positional Embedding (PE) 53.90 54.19 53.97 56.45 57.75
T + LR + PE + Unique-softmax 57.13 57.17 57.14 58.68 60.26

Per-Layer Positional Embedding.We introduce a per-layer posi-
tional embedding (§4.3) to offer high-quality position information.
Recall that our scheme slightly differs from a positional embedding
in BERT in that BERT combines a positional embedding with a
token embedding merely for the first layer whereas AsmDepictor
does for all layers. We conduct an experiment to confirm that our
approach assists an overall performance. Table 3 shows the effective-
ness of a per-layer positioning embedding alone in comparison with
a positional encoding from Transformer and a positional embed-
ding from BERT. Notably, the AsmDepictor strategy for position
information outperforms other approaches in both F1 (i.e., increase
of 18.62 and 1.31) and Jaccard* score (i.e., increase of 18.34 and
0.49).
Unique-softmax Function. As stated in §4.3, we devise the
Unique-softmax function to reduce the side effects of layer normal-
ization and scaling by the softmax in Transformer. For comparison,
we utilize different activation functions including sigmoid and the
softmax. Although using a sigmoid function can be a straightfor-
ward alternative by allowing each word (each scalar in a key vector)
to map into the range of (0, 1), it cannot represent the weighted sum
of a word as softmax. Table 4 shows the effectiveness of Unique-
softmax in comparison with sigmoid and softmax. The Unique-
softmax exceeds other activation functions with F1 by an increase
of 3.54 and 3.17, and with Jaccard* by an increase of 2.35 and 2.51.
Ablation Study.We evaluateAsmDepictorwith ablation on three
techniques to enhance its performance to demonstrate the effec-
tiveness of each technique. We adopt our techniques atop the naïve
Transformer, such as a layer reduction, per-layer position embed-
ding, and Unique-softmax. Note that we feed an instruction with
BPE to Transformer with three layers. The ablation study (Table 5)
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Table 6: Performance comparison with state-of-the-art base-

line models. AsmDepictor outperforms Debin [30] and

NERO [17] with a wide margin (i.e., 4x better performance).

The AsmDepictor model with DSA achieves up to 71.5 of F1

and 75.4 of Jaccard* score.

Model Precision Recall F1 Rouge-l Jaccard*

Debin 5.73 5.66 5.66 5.87 5.94
NERO 12.35 12.36 12.35 14.07 14.99
Transformer 47.31 47.80 47.46 50.74 50.12

AsmDepictor (DSN) 57.13 57.17 57.14 58.68 60.26
AsmDepictor (DSA) 71.52 71.53 71.52 73.75 75.42

Figure 6: F1 and Jaccard* scores by a token length per func-

tion. Empirical results show a decent performance (up to

around 80) with the number of tokens ranging from 20 to

200, which accounts for 64.1% of the whole functions.

confirms that performance has been gradually improved by adding
each technique. Adding all strategies together results in consider-
able performance advances by 9.68 in F1 and 10.14 in Jaccard* score,
compared to the baseline Transformer. Note that we observe that
it is indeed rare to see redundant tokens in a function body with
BPE processing. Rather, it is common to see redundant values of
Attention, which advances overall performance.

6.3 AsmDepictor Performance (RQ3)

Baseline Models. Debin [30] is a non-neural network model that
instead utilizes a conditional random field [46] to predict both func-
tion and variable names. Although the main design of Debin focuses
on a variable name generation task (rather than a function name),
we brought its function name prediction scores for comparison.
Lately, NERO [17] targets a function name generation task via a
graph neural network (GNN) [41] that is the closest in spirit to
our work. The approach of NERO leverages enriched representa-
tions with a set of call-site sequences to predicting a subroutine
name, constraining its application solely to a function in the pres-
ence of a call site. Besides, we include experiments using a naïve
Transformer [75] (i.e., six layers). It is noteworthy mentioning that
we follow Debin and NERO’s pre-processing for their evaluations,
where we use data refining with BPE for other models. We employ
DSN for training all models but AsmDepictor with DSA. Addition-
ally, we utilize the Rouge-l metric for further comparison.
Results. Table 6 shows the performance comparison of Debin,

Table 7: Comparison of training time and memory size per

epoch depending on different instruction tokenization meth-

ods and positional embedding strategies.

Method (Strategy) Training Time Memory Size

Instruction 14m 44s 18,529 MB
Instruction w/ 𝐷𝑈 11m 2s 12,653 MB
Instruction w/ 𝐷𝑈𝑆 10m 9s 10,991 MB
Instruction w/ BPE 6m 41s 5,961 MB

Positional encoding (Transformer) 6m 40s 5,967 MB
Positional embedding (BERT) 6m 38s 5,957 MB
Per-Layer positional embedding 6m 41s 5,961 MB

NERO, Transformer, and AsmDepictor with the two different cor-
pora. Our model trained with DSN surpasses 400% or more per-
formance than previous the-state-of-the-art models (𝐹1 of 57.1 or
Jaccard* score of 60.3). TheAsmDepictormodel withDSA achieves
up to 𝐹1 of 71.5 or Jaccard* score of 75.4, indicating that three out
of four (learned) function symbols have been precisely inferred.
Moreover, we analyze performance variation by the token length
of a function. Figure 6 depicts that a small number of tokens (e.g.,
< 20) exhibits a foreseeable low performance mainly because, as
an extreme instance, a function with a single token (e.g., ret) does
not convey much information to deduce a function symbol. Mean-
while, the performance of a longer token length (e.g., > 200) has a
relatively higher variance. Note that AsmDepictor records a fairly
reasonable Jaccard* score for the token length between 20 and 200,
which two thirds of the entire functions belong to. Moreover, we
conduct an additional experiment with a large number of tokens
(e.g., > 300) per function body, resulting in a comparable score (e.g.,
F1= 72.85, Jaccard*= 76.17) after truncating them.

6.4 Efficiency of AsmDepictor (RQ4)

In this section, we exhibit the efficiency ofAsmDepictor in terms of
practicality. Table 7 summarizes training time and memory size per
epoch (with DSN) across different instruction tokenization meth-
ods and positional embedding strategies. Our tokenization means
with BPE shows a significant reduction on a computational cost
because it helps to decrease the total number of vocabularies and
their embedding size. Meanwhile, different positional embedding
strategies show marginal gaps. Note that the whole training for
our models took 16 hours 42 minutes (150 epochs) with DSN, and 7
days 11 hours 46 minutes (200 epochs) with DSA.

6.5 Discussion and Limitation

Output Word Limitation. One of evident limitations is that
AsmDepictor solely allows for generating a sequence that con-
sists of known vocabularies. In other words, the performance of the
AsmDepictor decoder relies on a learned set of output tokens. Thus,
an attempt to infer a function symbol that contains an unknown
word during training may severely impact an overall performance,
being unable to assist a reversing task. To mitigate the current re-
striction, we envision two directions as part of our futurework. First,
the limitation can be relaxed by training with a rich description
like documentation comments that annotate source code for other
accessible formats (e.g., HTML, PDF). Second, recent advancement
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with the GPT architecture [64] allows theAsmDepictor encoder to
be able to blend with a GPT-2 pre-trained model, efficiently tackling
an OOV problem for an output.
Unique-softmax Computation. Unlike the softmax activation,
the Unique-softmax computation requires additional resources for
sorting values (𝑂 (𝑛 log𝑛)) within a matrix to remove duplicates. As
a result, training AsmDepictor indeed takes 33% more time than
Transformer. However, one may prefer a trade-off to save training
time with a naïve Transformer decoder because our ablation study
(Table 5) shows limited performance degradation due to the rare
occurrence of a redundant token. Note that the training is a one-
time process.
Unbalanced Token Frequency. As illustrated in Figure 7, the
token frequency of instructions with BPE entails a long tail, which
means that considerable amount of tokens have been rarely ap-
peared. Thus, it is possible that AsmDepictor could produce a
relatively poor result with a function that accommodates many
tokens with a low frequency.
Function Inlining and Outlining. As one of compiler optimiza-
tion techniques, inlining a function is a common process by em-
bedding the function into another to reduce runtime overheads.
On the contrary, a compiler may carry out a function outlining
task that defines an identical sequence of instructions as a separate
function. In this work, we do not consider such optimizations that
could distort the original function symbols.
Function Name Mangling. Modern compilers take advantage of
name mangling (i.e., name decoration) to resolve a conflict when
having the same identifier across different namespaces or having
different function signatures (e.g., function overloading). The cur-
rent implementation of AsmDepictor excludes a function name
using such a name mangling scheme because it often implies a class
hierarchy, data type or structure that does not directly depict the
behavior of a function. It is noted that there is not a standard name
mangling rule, resulting in different mangled identifiers across
different compilers, compiler versions, or architectures.
Other Applications.We believe that our work can be expanded to
other useful applications For instance, the AsmDepictor structure
can learn a malware behavior description (or comments from pre-
vious analysis) corresponding to a sequence of machine codes, pro-
viding a quick overview when a suspicious code is given. Learning
function symbols from ossified code fragments (e.g., driver, kernel,
network stack, firmware) across different versions can be another
good application of AsmDepictor for finding a known vulnerabil-
ity within a function. It is worth noting that it is possible to build
an instruction-set-specific model per architecture because the way
of learning an assembly language in AsmDepictor is architecture-
agnostic.

7 RELATEDWORK

Binary Code Representation for DNN. A wide spectrum of
previous approaches [21, 42, 48, 55, 60, 70, 80, 82] pertaining to
binary code representation have been introduced for deep learn-
ing. Early work [70] takes a simple approach by feeding each byte
to a deep neural network for recognizing a function boundary in
a binary. InnerEye [82] introduces a simple pre-processing rule

(e.g., converting an immediate to 0) to avoid OOV for assembly
codes. Asm2vec [21] proposes an assembly code representation
learning based on PV-DM (Distributed Memory version of Para-
graph Vector) model [47]. DeepBinDiff [80] generates an embed-
ding with an opcode and operands weighted with a TF-IDF (Term
Frequency-Inverse Document Frequency) model [65]. DeepSeman-
tic [42] introduces a well-balanced code normalization with a fine-
grained code transformation considering a register size, pointer
conversion, and varying cases in an operand (e.g., call target, ref-
erence). PalmTree [48] adopts BERT [20] with three tasks (MLM;
Masked Language Model, CWP; Context Window Prediction, Def-
Use Prediction; DUP) for capturing complex internal formats of
each instruction. Lately, Karampatsis et al. [37] suggest an advanced
approach with BPE [69] in the software engineering literature for
handling the following vocabulary issues: a large corpus of vo-
cabulary, an unseen vocabulary (i.e., OOV), and a rarely appeared
vocabulary. We adopt BPE for AsmDepictor because a set of ma-
chine instructions inevitably entails the above problems.
ML-assisted Binary Reversing. A compilation process irrevoca-
bly eliminates useful information for understanding code semantics
in a stripped binary, reverse engineers struggle to deduce its original
context. A plethora of prior work leverage deep learning techniques
to facilitating binary analysis [28, 54], decompilation [24, 28, 38, 39],
and essential information recovery [14, 17, 30, 45, 52] includ-
ing a type [14, 52], a variable name [14, 30, 45] and a function
name [17, 30]. Dire [45] proposes a variable prediction model based
on LSTM (Long Short-Term Memory) [32] and GNN [41] with an
AST. Debin [30] first introduces a prediction system for debug
information (e.g., function and variable symbol) that utilizes an
Extremely randomized Tree classifier and a linear probabilistic
graphical model. In a similar vein, NERO [17] leverages augmented
representations of call sites with GNN to generate a function name.
We compare AsmDepictorwith Debin [30] and NERO [17] as base-
line models. DIRTY [14] presents a Transformer-based model that
recommends a variable type and name for producing high-quality
decompilation output. One of the latest work, SymLM [36], is prob-
ably the closest in spirit to our work, which proposes a neural
architecture that learns context-sensitive function semantics by
jointly modeling the execution behavior of a calling context and
function instructions.

As a final note, AsmDepictor requires both an encoder and a
decoder for a description generation task (e.g., function symbol
name) while a discriminative model generally merely needs an
encoder for a label classification task (e.g., function similarity).

8 CONCLUSION

Even equipped with varying automation tools and techniques, bi-
nary reversing still requires expertise knowledge with tedious man-
ual efforts. We present AsmDepictor, the Transformer-based in-
ference framework for efficiently predicting a function symbol
name from an assembly language, which aims to give a quick
glimpse over a stripped binary for further binary analysis in practice.
The AsmDepictor framework consists of three main components:
data refinement (function de-duplication, BPE tokenization), model
training (per-layer positional embedding, Unique-softmax), and
a function name inference. Our empirical evaluation shows that
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AsmDepictor outperforms other state-of-the-art models, achieving
both F1 and Jaccard* scores up to four times.
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A APPENDIX

Algorithm 1: Unique-softmax Algorithm Pseudocode
Input: 𝒙 ∈ R𝐵×𝐻×𝑄×𝐾 where 𝐵: Batch size, 𝐻 : number of heads,𝑄 : Query

size, and 𝐾 : Key size
Round parameter 𝑟

Output:
exp(𝒙 )∑
𝑖 𝑒𝑥𝑝 (𝒖𝑖 )

∈ R𝐵×𝐻×𝑄×𝐾 where 𝒖 is unique values vector among
𝒙 rounded up by 𝑟

1 𝑚𝑎𝑥𝑒𝑠 ← 𝑡𝑜𝑟𝑐ℎ.𝑚𝑎𝑥 (𝑥,𝑑𝑖𝑚 = −1, 𝑘𝑒𝑒𝑝𝑑𝑖𝑚 = 𝑇𝑟𝑢𝑒 ) [0]
2 𝑥𝐸𝑥𝑝 ← 𝑡𝑜𝑟𝑐ℎ.𝑒𝑥𝑝 (𝑥 −𝑚𝑎𝑥𝑒𝑠 )
3 𝑥𝐸𝑥𝑝 ← 𝑡𝑜𝑟𝑐ℎ.𝑟𝑜𝑢𝑛𝑑 (𝑥𝐸𝑥𝑝 × 𝑡𝑜𝑟𝑐ℎ.𝑝𝑜𝑤 (10, 𝑟 ) )/(𝑡𝑜𝑟𝑐ℎ.𝑝𝑜𝑤 (10, 𝑟 ) )
4 𝑢𝑉𝑒𝑐, _← 𝑥𝐸𝑥𝑝.𝑠𝑜𝑟𝑡 (𝑑𝑖𝑚 = −1)
5 𝑢𝑉𝑒𝑐 [:, :, :, 1 :] ← 𝑢𝑉𝑒𝑐 [:, :, :, 1 :] × ( (𝑢𝑉𝑒𝑐 [:, :, :, 1 :] − 𝑢𝑉𝑒𝑐 [:, :, :, :
−1] )! = 0) .𝑙𝑜𝑛𝑔 ( )

6 𝑥𝐸𝑥𝑝𝑆𝑢𝑚 ← 𝑡𝑜𝑟𝑐ℎ.𝑠𝑢𝑚 (𝑢𝑉𝑒𝑐,𝑑𝑖𝑚 = −1, 𝑘𝑒𝑒𝑝𝑑𝑖𝑚 = 𝑇𝑟𝑢𝑒 )
7 return

𝑥𝐸𝑥𝑝

𝑥𝐸𝑥𝑝𝑆𝑢𝑚

Figure 7: The log scale plots of the frequency and rank for

input and output vocabularies approximately follows Quasi-

Zipfian distributions [81] (slightly concave curves). The to-

ken frequency of an assembly rapidly drops from a certain

point due to its rare appearance in our dataset.

A.1 Case Study

Table 11 shows comparison results of selected examples that four
different models yield the prediction of each procedure symbol.
NERO [17] and Debin [30] are state-of-the-art baselines, where
we utilize the two AsmDepictor models with DSN and DSA cor-
pus. The AsmDepictor model (DSA) is not only superior to others,
but it is also practical by presenting a series of candidates from
a function de-duplication process. For example, xcalloc is rela-
tively a small routine with 19 tokens, showing four other possible
function symbols despite the accurate inference of AsmDepictor:
m_calloc, event_alloc, bof_object, and state_new. We dis-
cover that oftentimes a routine with an identical assembly (as a func-
tion body) holds similar identifiers. Another good example would

Table 8: Empirical results of inferring a function symbol with

different code normalization means, which, we decide to stay

assembly codes intact.

Code Normalization Precision Recall F1 Rouge-l Jaccard*

Well-balanced (WB) 14.72 14.73 14.72 17.45 20.06
WB + Registers (R) 15.84 15.81 15.82 19.03 21.29
WB + Immediates (I) 17.02 17.01 17.01 19.90 22.09
WB + R+ I 19.67 19.64 19.64 21.91 24.31
Assembly code 57.25 57.15 57.67 58.81 60.67

Table 9: Empirical results with a combination of input and

output tokenization means. 𝐷𝑋 represents a separation by

the delimiter(s) of 𝑋 where𝑈 , 𝑆 , and 𝐶 denote an underscore,

special characters (e.g., [,],+,-, *,:), and a camel case. We

choose BPE and 𝐷𝑈𝐶 for an assembly code and function sym-

bol tokenization that shows the best performance.

Input (Assembly) Output (Function) Precision Recall F1 Jaccard*

Instruction Function 46.78 41.16 42.11 41.16
Instruction w/ 𝐷𝑈 Function 41.84 41.19 41.10 41.20
Instruction w/ 𝐷𝑈𝑆 Function 39.24 39.17 39.10 39.18
Instruction w/ BPE Function 40.62 40.65 40.62 40.65

Instruction Function w/ BPE 21.01 22.00 21.23 20.72
Instruction w/ 𝐷𝑈 Function w/ BPE 23.93 24.87 24.18 23.55
Instruction w/ 𝐷𝑈𝑆 Function w/ BPE 22.08 22.62 22.21 21.78
Instruction w/ BPE Function w/ BPE 28.91 30.37 29.31 29.12

Instruction Function w/ 𝐷𝑈𝐶 57.25 57.15 57.67 60.67
Instruction w/ 𝐷𝑈 Function w/ 𝐷𝑈𝐶 56.86 56.83 56.81 59.85
Instruction w/ 𝐷𝑈𝑆 Function w/ 𝐷𝑈𝐶 56.36 56.42 56.37 59.31
Instruction w/ BPE* Function w/ 𝐷𝑈𝐶* 57.13 57.17 57.14 60.26

be is_alpha_mbchar that AsmDepictor (DSA) made imprecise
prediction as as_is_alnum_mbchar, however, interestingly one
of its candidate contains the true symbol.

A.2 Additional Experiments for Code

Normalization

We quantitatively measure the effectiveness of code normalization
by adopting several code normalization strategies proposed by In-
nerEye [82], DeepSemantic [42], and PalmTree [48]. InnerEye [82]
first introduces a handful of simple rules to avoid OOV for code rep-
resentation by replacing an immediate value, string, function name,
and label (e.g., target adderess) to 0, <str>, <FOO>, and <tag>,
respectively. Meanwhile, DeepBinDiff [80] splits an instruction into
an opcode and operands where DeepSemantic [42] suggests a finer-
grained rules (e.g., well-balanced normalization) for an operand (e.g.,
immediate, register, pointer). Similarly, PalmTree [48] proposes to
remain two-byte immediate constants to offer rich information.
Table 10 concisely shows the examples of varying code normaliza-
tion and tokenization techniques. Not surprisingly, our empirical
experiment (Table 8) indicates the more information offers better
representation, however, it unavoidably incurs enormous computa-
tion resource (Table 2) as the volume of dataset increases. On the
other hand, we carry out another experiment of the effectiveness
of a tokenization (Table 9).

963



ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia HyunJin Kim, JinYeong Bak, Kyunghyun Cho, and Hyungjoon Koo

Table 10: Example of varying code normalization and tokenization techniques from previous approaches [42, 48, 80].

Representation Example1 Example2 Note

Assembly Original instruction sub rsp, 0x50 mov qword ptr [rbp-0x58] Disassembled by IDA [2]
Instruction as a single word sub_rsp_0x50 mov_qword_ptr_[rbp-0x58] Combined with an underbar

Normalization Well-balanced (WB) sub_sp8_immval mov_qword_ptr_[reg8-disp] Applying DeepSemantic rules [42]
WB + Registers (R) sub_rsp_immval mov_qword_ptr_[rbp-disp] Adding register names [80]
WB + Immediates (I) sub_sp8_0x50 mov_qword_ptr_[reg8-disp] Adding 2-byte immediate values [48]
WB + R + I sub_rsp_0x50 mov_qword_ptr_[rbp-disp] Adding both registers and immediates [48, 80]

Tokenization Delimited with _ (DU) sub, rsp, 0x50 mov, qword, ptr, [rbp-0x58] Splitted by an underbar
DU + Letter separation sub, rsp, 0x50 mov, qword, ptr, [, rbp, -, 0x58, ] Separating special letters including [, +, -, ], :
Byte-pair encoding (BPE) sub_rsp_0x5@@, 0 mov_qword_ptr_[rbp+0x@@, 58] Applying BPE

Table 11: Comparison of 20 selected function symbols in an alphabetical order across state-of-the-art baseline models [17, 30].

● represents a precisely generated function symbol whereas ✗ means an empty output. The bold letters mean a partially

accurate word that describes the original function regardless of its order. AsmDepictor is capable of producing possible

function symbol candidates (i.e., a parenthesis below) collected from a function de-duplication process.

Debugging Symbol # Tokens AsmDepictor (DSA) AsmDepictor (DSN) NERO Debin

cb_build_perform_varying 292 cb_build_register cb_build_program_forever ecc_mul arm_print_vma_and_name
cb_build_program_id 108 ● cb_build_program options_menu cint_remove
check_relaxed_syntax 227 check_type_name check_backup_file get_a_display make_3way_diff
close_stdout 40 ● ● ● ●

config_new 14 ● new_kbnode, options_create stdin_free edit_new conffile_bool
dbg_copy_some_packets 96 dbg_copy_all_packets get_reloc_name uuconf_process_time api_get_file
default_homedir 66 ● set_default_homedir dc_dc_quoted_free mail_move_event
drop_privs 21 ● set_address ✗ lock_terminal
get_seckey_byname 72 ● v2i_general_name quotearg_custom display_mips_gnu_attribute
init_keywords 63 ● ● menu_init hints_setup

is_alpha_mbchar 57 is_alnum_mbchar (is_blank_mbchar,
is_alpha_mbchar, is_punct_mbchar) is_selected is_hashed gettok

mb_copy 38 ● ● ● ●

mbuiter_multi_next 181 ● ● ● ●

parse_datetime 47 subst_string ● parse ●

proc_encryption_packets 36 proc_signature_packets ● dfacomp print_reductions
quotearg_n_style_mem 31 ● ● ● ●

set_program_name 91 ● ● ● ●

write_file 215 ● ● process to_rgip

xcalloc 19 ●
(m_calloc, event_alloc,
bof_object, state_new) ● ● alloc_common

yyensure_buffer_stack 114 ●
grecs_json_ensure
buffer_stack

gram_ensure
buffer_stack

grecs_meta1_ensure
buffer_stack
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(a) Naïve Transformer with six layers

(b) Transformer with three layers (layer reduction)

(c) AsmDepictor with softmax

(d) AsmDepictor with Unique-softmax

Figure 8: Comparison of four Attention heatmaps with different configurations. The visualizations clearly show that the

relationships (attention values) between tokens have been faded away when entering the upper layers (e.g., Layer 1 VS Layer 3)

in case of 8a, 8b and 8c. On the other hand, the built-in Unique-softmax for AsmDepictor effectively maintains the values

even at the uppermost layer (8d).
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