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ABSTRACT
Code diversification is an effective mitigation against return-oriented
programming attacks, which breaks the assumptions of attackers
about the location and structure of useful instruction sequences,
known as “gadgets.” Although a wide range of code diversification
techniques of varying levels of granularity exist, most of them rely
on the availability of source code, debug symbols, or the assumption
of fully precise code disassembly, limiting their practical applica-
bility for the protection of closed-source third-party applications.
In-place code randomization has been proposed as an alternative
binary-compatible diversification technique that is tolerant of par-
tial disassembly coverage, in the expense though of leaving some
gadgets intact, at the disposal of attackers. Consequently, the possi-
bility of constructing robust ROP payloads using only the remaining
non-randomized gadgets is still open.

In this paper we present instruction displacement, a code diversifi-
cation technique based on static binary instrumentation that does not
rely on complete code disassembly coverage. Instruction displace-
ment aims to improve the randomization coverage and entropy of
existing binary-level code diversification techniques by displacing
any remaining non-randomized gadgets to random locations. The
results of our experimental evaluation demonstrate that instruction
displacement reduces the number of non-randomized gadgets in the
extracted code regions from 15.04% for standalone in-place code
randomization, to 2.77% for the combination of both techniques. At
the same time, the additional indirection introduced due to displace-
ment incurs a negligible runtime overhead of 0.36% on average for
the SPEC CPU2006 benchmarks.
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1. INTRODUCTION
The deployment of non-executable page protections in recent

operating systems has prompted a shift from code injection to code
reuse attacks [23, 35, 50]. In a code reuse attack, after the control
flow of a vulnerable process is hijacked, execution is diverted to code
that already exists in the address space of the vulnerable process,
instead of externally introduced code. Return-oriented programming
(ROP) [50] has become the de facto code reuse technique, as the
stitching of short instruction sequences (called “gadgets”) allows
for increased flexibility in achieving arbitrary code execution, even
in the presence of additional protection mechanisms such as control
flow integrity [15, 16, 21, 24, 28, 47].

Constructing a functional ROP exploit requires precise knowl-
edge of the location and structure of the code in a vulnerable process,
and thus various protections aim to break these two assumptions.
Address space layout randomization (ASLR) [44] randomizes the
load address of shared libraries and main executables to prevent the
reuse of code from known locations. Although incomplete ASLR
coverage often leaves enough code mapped in static locations to
allow the construction of functional ROP payloads [26, 32, 43, 59],
even when a process is fully randomized, memory disclosure bugs
can be used to leak the base address of code segments. This allows
exploits to dynamically adjust gadget offsets in the ROP payload
before executing it, improving this way reliability for frequently
updated target applications, such as browsers and document view-
ers [6, 7, 10, 34, 37, 49].

To mitigate the effect of ASLR bypasses, code diversification
techniques [11, 12, 22, 30, 33, 41, 55] change not only the location
but also the structure of code, breaking the assumptions of attack-
ers about existing gadgets. Even if the offsets of some gadgets in
the original program are known, the same offsets in a diversified
instance of the same program will correspond to arbitrary instruc-
tion sequences, rendering any ROP payloads constructed based on
the original code image unusable. In feature-rich applications with
scripting support, however, malicious script code can leverage a
memory leak to dynamically scan the code segments of a process,
pinpoint useful gadgets, and synthesize them into a functional ROP
payload at runtime. Such “just-in-time” ROP (JIT-ROP) attacks [52]
can be used to effectively bypass code diversification protections.
Code diversification can also be bypassed under certain circum-
stances by remotely leaking [13] or inferring [48] what code exists
at a given memory location.

A crucial requirement for the successful operation of a JIT-ROP
exploit is the ability to read the executable memory segments of
the vulnerable process through a memory disclosure vulnerability.
Based on this observation, recent works have proposed the enforce-
ment of an “execute-no-read” policy to allow instruction fetches
but prevent memory reads from code pages, and thus block any



on-the-fly gadget discovery attempt. As the x86 and x86-64 archi-
tectures provide only “write” and “execute” memory page protection
bits, execute-only policies are enforced in other ways, including
page table manipulation [8], split TLBs [27], virtualization exten-
sions [19, 54, 57], or techniques based on a lightweight form of
software fault isolation [14].

Either as a standalone defense, or as a prerequisite of execute-
only memory protections, code diversification is an effective defense
against ROP exploits. From a practical perspective, however, the
applicability of most of the existing techniques for the protection
of third-party applications depends on the availability of source
code [1, 11, 12, 33], debug symbols [3, 4], or the assumption of
accurate code disassembly [30,55,58]. Unfortunately, achieving full
disassembly coverage and precision is a challenging proposition,
especially for the complex closed-source programs that have been
plagued by ROP exploits in the wild, such as Windows browsers
and document viewers.

In-place code randomization [41], on the other hand, is a code di-
versification technique that can be applied on stripped binaries even
without complete disassembly coverage. This is achieved through a
set of narrow-scoped code transformations that eliminate or proba-
bilistically alter the functionality of short instruction sequences that
can be used as ROP gadgets, without changing the location or size
of basic blocks. Unavoidably, however, the opportunistic nature of
the applied transformations results in incomplete randomization cov-
erage, leaving many unaffected gadgets to the disposal of attackers.
Based on the results reported by Pappas et al. [41], 82% of the gad-
gets in the correctly disassembled code of various Windows binaries
could be modified on average. Although the authors report that two
automated ROP payload construction tools were unable to construct
a functional payload using solely the remaining unmodifiable gad-
gets, this does not exclude the possibility that a functional payload
could still be constructed using only non-randomized gadgets, e.g.,
in a manual way or using an advanced ROP compiler.

Code diversification techniques that do not rely on fully precise
code disassembly are an attractive defense due to their practical
applicability on even complex binaries. Increasing their randomiza-
tion coverage in the face of imprecise disassembly is important to
improve resilience against attacks that may rely on unmodifiable
gadgets for the construction of ROP payloads. Furthermore, recent
work on binary-level execute-only memory protections against JIT-
ROP attacks [8, 54, 57] necessitates the development of effective
code diversification techniques compatible with complex binary
executables—without enough code diversification coverage, a func-
tional JIT-ROP exploit may still be possible.

As a step towards improving the current state of the art in binary-
level code diversification techniques for COTS software, in this
paper we present instruction displacement, a new code randomiza-
tion technique based on static binary instrumentation that does not
rely on complete code disassembly coverage. Instruction displace-
ment relocates sequences of instructions that contain gadgets into
random locations, and overwrites the original code with trap instruc-
tions, effectively preventing their use by an attacker. The end goal
of the proposed technique is to improve the randomization coverage
and entropy achieved by existing code diversification techniques
with a minimal performance impact.

We have implemented a prototype of instruction displacement for
Windows binaries, and applied it on a wide range of closed source
applications, such as Microsoft Office and Adobe Reader. The
results of our experimental evaluation demonstrate that instruction
displacement reduces the number of non-randomized gadgets from
15.04% for standalone in-place code randomization, to 2.77% for
the combination of both techniques (or from 21.45% to 8.96%,

when also considering the non-disassembled code regions). At the
same time, the additional indirection introduced due to displacement
incurs a negligible runtime overhead of 0.36% on average for the
SPEC CPU2006 benchmarks.

In summary, our work makes the following main contributions:

• We present instruction displacement, a practical code diversi-
fication technique for stripped binary executables, applicable
even with partial code disassembly coverage.

• We have implemented a prototype of the proposed instruction
displacement technique for Windows binaries, and describe
in detail its design and implementation.

• We have experimentally evaluated of our prototype imple-
mentation, and demonstrate that it reduces the number of
non-randomized gadgets from 15.04% for standalone in-place
code randomization, to 2.77% for the combination of both
techniques, while incurring a negligible runtime overhead of
0.36% for the SPEC CPU2006 benchmarks.

2. BACKGROUND AND MOTIVATION
The complexity of static binary code analysis when dealing with

complex stripped executables poses challenges for code diversifica-
tion protections. Being a provably undecidable problem [56], accu-
rate code disassembly and complete control flow graph extraction is
complicated due to intermixed code and data, jump tables, computed
jumps, callback and exception handling routines, and other code in-
tricacies. Although at the source code level (or when debug symbols
are available) it is possible to perform extensive transformations
that effectively randomize all available gadgets [1, 11, 12, 20, 33], at
the binary level it is challenging to apply aggressive fine-grained
code diversification, such as randomizing the location of functions
or basic blocks.

Existing attempts to achieve this, such as Binary Stirring [55],
rely on various heuristics to fully and precisely extract all code and
code references, so that after randomization all appropriate points
can be fixed appropriately. Unfortunately, however, although such
approaches may work well for relatively simple executables, they do
not scale for large and complex COTS software, such the vulnerable
Windows browsers and document viewers that are being targeted in
the wild. Indeed, Wartell et al. [55] evaluate Binary Stirring using
only main executables (not dynamic libraries) taken from simple
utility programs. Introducing a runtime component after static anal-
ysis [30], on the other hand, can allow for the randomization of
arbitrarily complex programs, in the expense though of increased
runtime overhead.

From a practical perspective, a different compromise can be made
by accepting the imprecision of static code analysis, and developing
binary-compatible code diversification techniques that can tolerate
partial code extraction in the expense of the achieved randomization
coverage. In-place code randomization (IPR) [41], for instance,
uses four different narrow-scoped code transformations that proba-
bilistically alter the functionality of (or eliminate completely) short
instruction sequences that can be used as gadgets.

Specifically, instruction substitution replaces existing instructions
with functionally-equivalent ones (of the same or smaller length), to
alter any overlapping instructions that may be part of a gadget. Basic
block instruction reordering changes the order of instructions within
a basic block according to an alternative, functionally equivalent
instruction scheduling, again affecting any overlapping gadgets.
Register preservation code reordering changes the order of the
push <reg> and pop <reg> instructions that are often used at
function prologues and epilogues, respectively, to alter the semantics



of any useful “pop; pop; ret;” gadgets that are often found at
function epilogues. Lastly, register reassignment swaps the register
operands of instructions throughout overlapping live ranges, again
with the goal to alter the semantics of any gadgets that involve those
registers.

By not altering the location and size of basic blocks and functions,
IPR diversifies only the accurately extracted parts of the code, en-
abling compatibility with third-party stripped binaries. The achieved
partial code randomization, however, unavoidably leaves a fraction
of gadgets completely unaffected by the applied randomization.
Specifically, Pappas et al. [41] report that on average, 18% of the
gadgets located in the extracted code regions remained unmodified.
When also considering the executable regions that were left out due
to incomplete disassembly coverage, this percentage increases to
23.1% of all gadgets in the binary. Although the authors demonstrate
that two automated ROP payload construction tools did not manage
to construct a functional ROP payload using solely the remaining
23.1% of the gadgets, as they admit, this does not preclude that
an attacker could manually construct a robust payload using solely
unmodifiable gadgets.

Furthermore, some of the randomized gadgets are affected only in
a minimal and predictable way that may still allow for their use. For
instance, an attacker could still use a reordered function epilogue
gadget by initializing the register operands of all pop instructions
in the gadget with the same value, and then reliably using any one of
the initialized registers. Consequently, it is also desirable to increase
the entropy of randomization, so that guessing or inferring the state
of a randomized gadget becomes much harder.

In this work, we aim to improve both the coverage and entropy of
binary-level code diversification, so that the percentage of any reli-
ably usable (i.e., non-randomized) gadgets is reduced even further.

Threat Model
Code diversification techniques rely on the assumption that an at-
tacker cannot read or leak a diversified instance of the protected code.
Experience though has shown that under certain conditions this is
possible by reading [52], leaking [13], or inferring [48] the code
of a vulnerable process. Although instruction displacement makes
the gadgets “disappear” from their original locations, they are still
available in some other random location. Consequently, as any code
diversification technique, it cannot defend against JIT-ROP [52] and
other code leakage attacks.

These can be tackled by recent execute-only memory protec-
tions [8, 14, 19, 27, 54, 57], which operate under the assumption that
protected code has been properly diversified. For binary-compatible
approaches [8, 54, 57], instruction displacement can be crucial in
ensuring that adequate randomization coverage has been achieved.
When execute-only memory enforcement is implemented using the
concept of “destructive reads” [54, 57], however, an attacker may
be able to infer the structure of a randomized gadget by (destruc-
tively) reading a few preceding bytes [53]. As is also the case
with previous in-place code transformations [41], in such a setting
where an attacker can disclose arbitrary bytes of the randomized
code, instruction displacement can be undermined. For instance, by
(destructively) reading the bytes of the inserted jump instructions,
a JIT-ROP exploit can pinpoint at runtime the actual address of
the displaced gadgets and then use them as part of a dynamically
constructed ROP payload. [53]

3. INSTRUCTION DISPLACEMENT
The goal of instruction displacement is to randomize the locations

of gadgets so that their starting addresses become unknown to an
attacker. In contrast to in-place code randomization, which leaves

the randomized instructions in their original locations, instruction
displacement relocates sequences of instructions that contain gad-
gets from their original locations to a newly allocated code segment.
Due to ASLR and additional random padding, the base address of
this separate segment in the address space of a process is completely
random, and thus the locations of all displaced gadgets become
unpredictable.

In the rest of this section, we first provide an overview of the
overall displacement approach and various constraints that must be
satisfied, and then describe in detail the displacement strategy that
we follow.

3.1 Overall Approach
Any code diversification approach must maintain the semantics

of the original program. In addition, given our assumption that parts
of the original code may not have been extracted or disassembled
properly, an additional constraint that must be followed is that the
location and size of any correctly identified basic blocks must not
be altered.

Changing the location of a basic block requires adjusting all
instructions in the rest of the code that transfer control to that basic
block—including computed jumps—to point to the new location.
In our case, given that a complete view of the control flow graph is
not available, moving a basic block may break the semantics of the
code, since any control transfer from non-extracted code to that basic
block will become stale, as it will still point to the original location.
Similarly, changing the size of a basic block, e.g., in order to add
more instructions for diversification purposes, requires shifting any
code that immediately follows the expanded basic block. In essence,
this means that all basic blocks following the modified one must be
moved, which again is not possible.

Given the above constraints, we observe that although we cannot
change the boundaries of a basic block, we can still perform arbitrary
modifications within a basic block, as long as the semantics of the
code remain the same (e.g., as is the case with the intra basic block
instruction reordering transformation of in-place code randomiza-
tion [41]). Furthermore, although patching an arbitrary location of a
binary executable is not possible, we can safely patch any location
within a basic block (assuming there is enough space), as long as
the basic block’s boundaries have been properly identified.

Based on these two observations, instruction displacement uses
code patching to selectively relocate (some of) the instructions of a
basic block to a random location. The overall approach is illustrated
in Figure 1. The upper part of the figure shows the original code
of a basic block (rectangles represent variable-length instructions),
and the lower part shows the modified version of the code, with
some of its instructions displaced into a new code region. In this
example, the basic block contains two ROP gadgets, G1 and G2,
located at addresses addr1 and addr2, respectively. The first (G1)
is an unintended gadget that begins from the middle of an existing
instruction and ends with a ret instruction (opcode 0xC3) located
again within an existing instruction. The second (G2) is an intended
gadget that ends with a call eax instruction that is part of the
program’s code.

In the modified version of the code, the instructions at the be-
ginning of the basic block have been overwritten by a relative jmp
instruction that points to the overwritten instructions, which have
now been copied into a random location, along with some of their
following instructions. Note that the jmp instruction takes five bytes
(one-byte opcode plus four bytes for its immediate operand), and
thus instructions contained in basic blocks shorter than five bytes
cannot be displaced in the general case. Although a smaller 2-byte
relative jmp instruction could be used, its 8-bit displacement usually
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Figure 1: High-level view of instruction displacement. By moving part of the original basic block’s code in a random location, the
starting addresses of the two gadgets become unpredictable. To maintain the original semantics of the code, the displaced instructions
are linked with the rest of the code using relative jumps.

cannot “reach” far enough for transferring control to the area that
contains the displaced instructions. For such cases, an alternative
approach would be to insert a smaller trap instruction and achieve
indirection through an appropriate handler routine. Unfortunately,
the associated runtime overhead of such a solution would be pro-
hibitively high. As we discuss in Section 5.1.2, the percentage of
gadgets in such small basic blocks is very low, in the order of 0.83%,
and thus we have chosen to ignore them.

Recall that a basic block is defined as a straight-line sequence
of instructions with only one entry point and only one exit. Con-
sequently, we can safely patch with a jmp instruction any location
within a basic block that corresponds to the address of an existing
instruction. To preserve the semantics of the basic block’s code, all
that remains to be done is to transfer control back to the original
location after the execution of the displaced instructions. This can
be achieved again with a relative jmp placed right after the final
displaced instruction.

By moving the instructions that contain the two gadgets in a
randomly chosen location, an attacker cannot rely on them anymore
based on their original addresses. The original code right after the
patched location is overwritten with instructions that will crash the
program or trap execution (e.g., privileged or interrupt instructions),
and thus any transfer to the original locations of the gadgets (addr1
and addr2) is ruled out. At the same time, the starting addresses
of the displaced gadgets are now random, so an attacker cannot
guess them (proper ASLR implementations, e.g., the one used in the
latest versions of Windows, and additional random padding at the
beginning of the segment that contains the displaced code fragments
achieve enough entropy for that purpose).

3.2 Displacement Strategy
Although the address of a displaced gadget is not known to an

attacker, the location of the inserted jmp can be easier to predict, and
thus an attacker can still use it as the starting address for reaching a
gadget. Depending on whether a gadget is intended or unintended,
we can follow a different displacement strategy while trying to
minimize the number of displaced instructions.

3.2.1 Intended Gadgets
Due to the inserted jmp, among all intended gadgets in a dis-

placed code region, the one that (in the original code) begins with
the patched instruction is still usable—the attacker can still rely
on its original address, and the inserted jmp at that location will
unconditionally transfer control to it. Depending on the location
of the gadget within the basic block, however, this means that the
attacker now must use a longer gadget, which is likely to have many
more side effects in terms of register and memory state changes (a
given indirect branch instruction is generally the “end” of several
nested gadgets extending backwards from it). Although the use of
longer-than-usual gadgets is possible [16, 21, 28, 47], it complicates
significantly the construction of ROP payloads due to the additional
side effects of the extra non-essential instructions.

To increase the complexity of any remaining usable gadgets, a
displaced sequence of instructions begins as “far” as possible from
any contained gadgets—in most cases, this means the beginning of
the respective basic block. Given that it is desirable to minimize the
number of displaced instructions, for very large basic blocks, we
have set a limit of displacing up to 20 instructions from the end of a
target gadget. In the example of Figure 1, the jmp is inserted at the
beginning of the basic block, and the three instructions of gadget G2
can now be used only if seven additional instructions are executed
before them.

Given that the percentage of the remaining usable gadgets by
following the “entry point” of a displaced region is very low (0.6%
in our experiments, as discussed in Section 5.1.2), we have chosen
to not take any further action about them. We should note, however,
that instruction displacement opens up more possibilities for ran-
domizing or eliminating altogether the displaced gadgets. Indeed,
once a sequence of instructions has been displaced, further transfor-
mations on the displaced gadgets can be applied. Fortunately though,
in contrast to the general case, we can now fully disassemble the dis-
placed instructions, and there is no space constraint due to previous
or following basic blocks, as we have full control over the region
where the displaced instructions are copied, and the placement of
individual code fragments within that region. This means that we



can apply more aggressive code transformations, beyond what is
possible using in-place code randomization, such as splitting an
existing instruction into two or more instructions. As an alternative
example, we can apply transformations similar to the ones used by
G-Free [40] to completely eliminate the displaced gadgets.

3.2.2 Unintended Gadgets
Unintended gadgets begin only from unaligned instructions, and

may end with an either aligned or unaligned instruction (if the first
instruction is an aligned one, then there is no way to “escape” from
the intended instruction stream due to the unambiguous nature of
instruction decoding). Consequently, the “predictable entry point”
issue discussed above does not apply when a displaced instruction
sequence contains solely unintended gadgets—by following the in-
serted jmp, an attacker still cannot reach the unintended gadget (as
is the case with gadget G1 in Figure 1). This makes the decision
on which location to patch much simpler: it is enough to patch the
intended instruction that contains the opcode byte of the first unin-
tended instruction of the gadget. The location of that opcode byte
in the displaced instruction will be random, and by following the
jmp the attacker will be forced to execute the intended instruction
stream, without being able to reach the unintended gadget.

Especially for unintended gadgets, this approach is quite effective
even when a gadget spans two consecutive basic blocks. In such
cases, although we cannot displace the whole gadget (due to our
restriction in maintaining basic block boundaries intact), it is enough
to displace even just the first instruction of the gadget to make the
whole gadget unusable. This is possible when the first overlapping
instruction is located towards the end of the first basic block, in
which case it can be safely displaced.

In essence, instruction displacement enforces a coarse-grained
control flow integrity constraint in a probabilistic and selective way.
For intended gadgets, control flow is allowed to reach only the entry
point of the basic block that contains a gadget (or, for very large
basic blocks, the first of a sufficiently large number of instructions
preceding the gadget). For unintended gadgets, control flow cannot
“escape” from the intended instruction stream and reach any of the
unaligned instructions of the gadget.

3.2.3 Combining Instruction Displacement with In-
Place Code Randomization

Each displaced code region results in a slight increase in memory
space and CPU overhead, due to the copied code, the extra indirec-
tion, and the disruption of code locality (although the latter some
times has a positive impact, as discussed in Section 5.4). It is thus
desirable to minimize the number of displaced regions whenever
possible. Given that the end goal of the proposed technique is to
improve the coverage and entropy achieved by existing code diversi-
fication techniques, we can combine instruction displacement with
in-place code randomization, and apply the former only for gadgets
that cannot be randomized by any of the existing code transforma-
tions of IPR (and optionally, also for gadgets that are randomized
with insufficient entropy).

To that end, each binary is first analyzed to pinpoint all exist-
ing gadgets, and IPR is applied to randomize or eliminate as many
gadgets as possible. Then, a second instruction displacement pass
considers all remaining unmodifiable gadgets, and attempts to dis-
place them whenever possible. In many cases, a basic block might
contain several gadgets, some of which might be affected by IPR,
and some not. To increase randomization coverage as much as possi-
ble, we follow a conservative approach and apply displacement even
if only a single out of several gadgets within the same instruction
sequence cannot be randomized by IPR.

3.3 Putting It All Together
We discuss a few remaining issues and optimizations by looking

at a real example of applying instruction displacement. Figure 2
shows a basic block from Adobe Reader’s BIB.dll that contains
several (nested) gadgets ending with a ret instruction. In partic-
ular, “pop; pop; ret;” gadgets are quite useful in assembling
ROP payloads, while the call-preceded gadget starting with the
lea instruction can be used to bypass coarse-grained CFI protec-
tions [16, 21, 28, 47]. After instruction displacement, the push
instruction at address 0x7002806 has been replaced by a direct jmp
to the displaced instructions, which now reside at a random location
within a new .ropf section of the binary (detailed in the following
section). All remaining original instructions are overwritten with
int3 instructions. The only option that is now left for an attacker
is to use the code of the whole basic block, starting with the push
instruction. This might not be desirable, as it involves the execution
of another function, which may have disastrous side effects. All
other (intended and unintended) gadget starting locations within the
basic block become unpredictable.

This example illustrates a common case in which the ending
instruction of a gadget is also the final instruction of a basic block.
We can exploit this fact to reduce the number of indirections needed
due to instruction displacement. Depending on the type of branch
at the end of a basic block, a jmp back to the original location
may not be needed at all. As the most common case, all indirect
branch instructions (i.e., those that can be the ending instructions
of gadgets), will transfer control to the intended target no matter
whether they have been displaced or not. In this example, the ret
instruction will always transfer control to the return address that
will be read from the stack, irrespectively of the actual location
of the ret. Consequently, an extra jmp for transferring control
back to the original location is not needed. The same is true for
any unconditional branches, but care must be taken to adjust any
relative displacement operands accordingly. Unfortunately, the same
strategy cannot be applied for conditional branches, as we do not
have control of the fall-through target.

Any other instructions that involve relative address operands must
also be adjusted accordingly after the randomly chosen location of
the displaced code region is picked. Besides relative call instruc-
tions and the like, this includes PC-relative memory accesses for
64-bit programs.

4. IMPLEMENTATION
To demonstrate the effectiveness of instruction displacement, we

have developed a prototype implementation for Windows binaries.
Our prototype supports 32-bit PE binaries (both main executables
and dynamic link libraries), without relying on any debug or sym-
bolic information (e.g., PDB files). To randomize a binary, a three-
phase process is followed: i) identification of candidate gadgets for
displacement, ii) modification of the PE executable to add a new
code section for the displaced instructions, and iii) binary instrumen-
tation for actually displacing the selected gadgets. In the following,
we discuss these three phases in detail.

4.1 Gadget Identification
The first phase aims to identify the code regions that will be

displaced. A necessary condition for any candidate region is to fall
within the boundaries of a basic block, and thus a first necessary
step is to extract the code and identify as many functions and basic
blocks as possible. This is achieved using IDA Pro [29], a state-
of-the-art code disassembler that achieves decent accuracy when
dealing with regular (non-obfuscated) PE executables. IDA Pro
leverages the relocation information present in Windows DLLs,



07002806  E91CA00100    jmp  loc_0701C827

0700280B  CC            int3

...

07002813  CC            int3

0701C827  53            push  ebx

0701C828  FF1504000107  call  ds:LeaveCriticalSection

0701C82E  8D4704        lea  eax,[edi+0x4]

0701C831  5F            pop  edi

0701C832  5E            pop  esi

0701C833  5B            pop  ebx

0701C834  C3            ret

.text  section .text  section

.ropf  section

Original Displaced

07002806  53            push  ebx

07002807  FF1504000107  call  ds:LeaveCriticalSection

0700280D  8D4704        lea  eax,[edi+0x4]

07002810  5F            pop  edi

07002811  5E            pop  esi

07002812  5B            pop  ebx

07002813  C3            ret

Figure 2: A real example of gadget displacement taken from Adobe Reader’s BIB.dll module.

and identifies compiler-specific code constructs and optimizations,
such as basic block sharing [31]. We should note, however, that
as in previous works [41], we do not take into account IDA Pro’s
speculative disassembly results, e.g., for embedded data and code
regions that are reached only through computed jumps or which
are part of signal handling routines. These rely on heuristics that
are prone to errors, and thus we follow a conservative approach to
prevent any correctness issues with the instrumented code due to
falsely identified code regions.

Our code extraction module is based on the open-source imple-
mentation of in-place code randomization [2], which we also use
to pinpoint all remaining gadgets after the application of IPR. We
have extended the implementation to consider gadgets comprising
up to 15 instructions, from the just five instructions in the original
implementation. We use IPR with maximum coverage settings, so
as to reduce the number of displacements. An analysis pass then
identifies all remaining unmodified gadgets and calculates the appro-
priate code regions to displace as many gadgets as possible. Gadgets
contained in basic blocks smaller than five bytes are left intact, as
they cannot be safely patched. Depending on the proximity of dif-
ferent gadgets (ending with different indirect branch instructions)
within the same basic block, separate candidate regions are merged
to minimize the required instrumentation in terms of additional jmp
instructions. The final boundaries of each region are computed
based on the strategy described in Section 3.2.

4.2 PE File Layout Modification
Once all to-be-displaced code regions have been identified, the PE

file is augmented with a new code section, named .ropf, in which
the displaced regions will be moved. The executable is modified
using the pefile python library [17]. First, we define a new sec-
tion header in accordance with the IMAGE_SECTION_HEADER
structure, which is inserted into the section headers array, between
the last existing header and the first data section. For simplicity, the
new section is appended at the end of the file, so that the rest of the
sections remain intact. Although more complex layouts could be
studied to keep displaced instructions closer to their original loca-
tions and facilitate patching using two-byte jmp instructions (e.g.,
by identifying and reusing any unused regions within existing code
segments), the resulting increase in coverage would still be minimal
(due to the small percentage of less-than-5-byte basic blocks, as
well as the limited reach of the 8-bit displacement), so the added
complexity is not justified.

Besides the addition of the above entry, some existing information
related to the overall PE image must be updated accordingly. Specif-
ically, the following entries in the IMAGE_OPTIONAL_HEADER
structure need to be updated: size of code and image, size of ini-
tialized data and uninitialized data, and the checksum of the binary.
The size of the .ropf section is calculated based on the identified
code regions, and by provisioning some extra room for the added
jmp instructions for transferring control back to the original code,
as well as some padding space.

4.3 Binary Instrumentation
With the .ropf section ready to host the displaced instructions,

the actual patching of the original code and the copying of the
displaced instructions can begin. The identified code regions are
copied and placed in the .ropf section in a randomly chosen order
(an additional small random gap can be added between successive
regions if needed). As regions located within the same basic block
or function of the original code end up in close proximity after dis-
placement, this some times has a positive impact in terms of runtime
overhead due to code locality, as discussed in Section 5.4. More
sophisticated ordering schemes could also be explored, especially
when taking into consideration hot spots and code locality, e.g.,
based on prior profiling information. To diversify the locations of
gadgets even further, a large padding area of a randomly selected
size is allocated at the beginning of the .ropf section.

For the code disassembly and reassembly operations needed to
patch the original code locations, adjust the operands of displaced
instructions, and insert additional jmp instructions at the end of
displaced regions (whenever necessary), we use the Capstone frame-
work [46]. We have also employed several optimizations using
bit-level operations to speed up the instrumentation phase. Care
must be taken while generating the jmp instructions for patching
the original code so that any immediate operands do not result in
accidental generation of new potentially useful gadgets (e.g., due
to embedded 0xC3 bytes). This is avoided by adjusting the destina-
tion address of the displaced instructions by a few bytes in case an
immediate contains an indirect branch opcode.

Finally, a final important step for ensuring the correct operation of
the resulting binary is to update the PE file’s relocation information
for all affected code locations. To enable loading of modules at
arbitrary addresses, PE files contain a .reloc section that contains
a list of offsets (relative to each PE section), known as “fixups” [45,
51]. At load time, these entries specify the absolute code or data



.ropf

.reloc

NT_HEADER

SECTION_HEADERS

…

.text

…

DOS_HEADER

…

…

Padding

Block Size

0x1C000 + 
(0x304C AND 
0x0FFF)

3FC7
3FE5
0000

Type RVA
Type RVA
Type RVA

00001FC7 IMAGE_REL_BASED_HIGHLOW
00001FE5 IMAGE_REL_BASED_HIGHLOW

00002000
000000D8

3046
3066
3071
3076

RVA of Block
Size of Block
Type RVA
Type RVA
Type RVA
Type RVA

00002046 IMAGE_REL_BASED_HIGHLOW
00002066 IMAGE_REL_BASED_HIGHLOW
00002071 IMAGE_REL_BASED_HIGHLOW
00002076 IMAGE_REL_BASED_HIGHLOW

3870 Type RVA 00018870 IMAGE_REL_BASED_HIGHLOW

0001C000
000000B4

3002
304C

RVA of Block
Size of Block
Type RVA
Type RVA

0001C002 IMAGE_REL_BASED_HIGHLOW
0001C04C IMAGE_REL_BASED_HIGHLOW

Figure 3: Rewriting the relocation section of a PE file for both the original (.text) and the new (.ropf) code sections.

addresses within the module that must be adjusted according to the
module’s load address (which is usually randomly selected, due to
ASLR).

As Figure 3 shows, the relocation table consists of a series of
blocks grouped according to their relative virtual address (RVA).
Each block begins with the RVA, the size of the block, the actual
relocation entries, and some padding bytes for alignment. Each
relocation entry consists of two bytes. The first four bits of the entry
are set to 0x3, which represents the most common type of fixup
transformation (IMAGE_REL_BASED_HIGHLOW). The following
12 bits represent the offset from the RVA of the corresponding block.
The relocatable address can be calculated by adding the RVA and
the offset, making it relative to the new base address of the segment
instead of its original (preferred) one [51].

A crucial detail here is that any relocation entries regarding lo-
cations in the original code regions (that have now been displaced)
must be removed from the respective block. The reason for this is
that any stale entries can lead to corruption of the inserted jmp in-
structions, e.g., in case any of the overwritten instructions happened
to involve RVAs with corresponding .reloc entries. Thus, not
only new entries for the .ropf section must be created, but also
the corresponding entries for the .text section must be removed,
resulting in a total number of relocation entries equal to the number
of entries in the original binary.

5. EXPERIMENTAL EVALUATION
In this section we present the results of the experimental evalu-

ation of our prototype implementation in terms of randomization
coverage, file size increase, correct execution, and performance
overhead. Our tests were performed on a 64-bit Windows 10 system
equipped with an Intel Core i5-4590 3.3GHz processor and 16GB
of RAM. For the evaluation of randomization coverage, we used
a set of 2,695 PE files (both main executables and DLLs) from
two different versions of Adobe Reader (Reader v9.3 and Acrobat
Reader DC), Microsoft Office 2013, two Windows 7 and Windows
8.1 installations, and other programs and utilities, as detailed in
Table 1. For correctness and performance evaluation, we used a
set of core Windows DLLs, as well as the Windows version of the
SPEC CPU2006 benchmark suite.

5.1 Randomization Coverage
We begin our evaluation with the goal of assessing the improve-

ment in terms of randomization coverage that instruction displace-
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Figure 4: Randomized gadgets per PE file due to in-place code
randomization, instruction displacement, and the combination
of both techniques.

ment can achieve. To that end, we compare the randomization
coverage of in-place code randomization [41], instruction displace-
ment, and the combination of the two techniques, as described in
Section 3.2.3. In our initial experiments we use a maximum gad-
get length of five instructions, so that our results are comparable
with the results reported by Pappas et al. [41]. In Section 5.1.3, we
present further results when considering gadgets of size up to 10
and 15 instructions.

Table 1 summarizes key statistics about the distribution of gadgets
in the tested binaries, and the randomization coverage of the two
techniques. The 2,695 executables contain a total of approximately
13 million gadgets, 58.52% of which are unintended. The “unreach-
able” column refers to gadgets located in regions that cannot be
properly disassembled, and thus are left untouched (by both tech-
niques). These amount to 6.37% of all gadgets on average. In the
rest of this section, unless specified otherwise, percentages of ran-
domized gadgets are calculated over the number of gadgets located
only within the properly disassembled code regions.

5.1.1 Coverage Improvement
Figure 4 shows the percentage of randomized gadgets in each PE

file achieved by in-place code randomization, instruction displace-
ment, and the combination of both techniques, as a cumulative frac-



Applications Gadget Distribution Randomized Gadgets Other

Name Files Total Unintended Unreachable IPR Disp. Both File Increase

Adobe Reader 50 677,689 55.24% 4.61% 82.16% 88.98% 96.69% 2.18%

MS Office 2013 18 195,774 55.04% 4.93% 83.02% 88.71% 97.25% 2.98%

Windows 7 1,224 5,595,031 53.97% 6.11% 83.95% 89.11% 97.41% 1.94%

Windows 8.1 1,341 6,077,543 63.46% 6.90% 86.43% 91.14% 97.15% 1.42%

Various 62 496,749 55.15% 5.79% 83.23% 89.21% 96.83% 1.79%

Total 2,695 13,042,786 58.52% 6.37% 84.96% 90.04% 97.23% 1.68%

Table 1: Data set of PE files used for randomization coverage analysis.

Disp. − IPR IPR − Disp.Disp. ∩ IPR

Disp.  IPR

∩

Displacement In-Place Rand.

12.27%
(11.49%)

7.19%
(6.73%)

77.78%
(72.82%)

90.04%
(84.31%)

84.96%
(79.55%)

97.23%
(91.04%)

Unreachable: 6.37%

Figure 5: Randomization coverage of each technique in rela-
tion to each other. Instruction displacement increases the cov-
erage achieved by in-place randomization alone from 84.96%
to 97.23%.

tion of all PE files in our data set. Although both techniques achieve
comparable coverage, their combination manages to randomize a
greater number of gadgets, and this is true for most executables, as
evident from the slightly steeper curve. Specifically, as shown in
Table 1, in-place code randomization on average affects 84.96% of
the gadgets, instruction displacement affects 90.04% of the gadgets,
while their combined use randomizes 97.23% of all gadgets in the
properly disassembled code regions.

The Venn diagram in Figure 5 sheds more light into how each of
the two techniques contributes in randomizing gadgets. While a ma-
jority of 77.78% can be randomized by both techniques, instruction
displacement affects an extra 12.27%, increasing significantly the
overall randomization coverage. When considering the whole binary,
including the areas that cannot be disassembled, the randomization
coverage is improved from 79.55% to 91.04%.

5.1.2 Gadget Analysis
The achieved randomization coverage of 97.23% leaves only a

remaining 2.77% of gadgets that cannot be randomized by either
of the two techniques. There are several reasons why instruction
displacement cannot affect those gadgets. Among them, 0.83%
are contained within basic blocks smaller than five bytes, and thus
cannot be displaced due to the restriction of having to use a 5-byte
jmp instruction for patching. Another 0.6% correspond to “basic
block entry” gadgets that remain usable by following the inserted
jmp instruction. The rest 1.34% cannot be displaced due to various
other corner cases related to basic block alignment.
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Figure 6: Randomization coverage for different maximum gad-
get lengths.

We also looked specifically into call-preceded gadgets, as they
can be particularly useful for an attacker that wants to bypass any
deployed coarse-grained CFI protections [16, 21, 28, 47]. The per-
centage of call-preceded among all gadgets, including the areas
that cannot be disassembled, is 5.76%. After randomization using
both techniques, their number is reduced to just 0.16% of all gadgets,
with 0.14% being located in unreachable regions. This means that
the achieved randomization coverage is enough to affect the vast
majority of call-preceded gadgets.

5.1.3 Longer Gadgets
Given that an attacker may be able to use longer gadgets by

spending some additional effort, we explored how the randomization
coverage is affected when considering longer gadgets. To that end,
we repeated our experiments using a maximum gadget length of 10
and 15 instructions. In all cases we follow the same approach as
before, i.e., we first apply each diversification technique separately,
followed by their combination.

Although the total number of discovered gadgets when consider-
ing a maximum length of 10 instructions increases by about 18%,
the percentage of randomized gadgets using both techniques re-
mains almost the same, at around 97.4%, and so does also for
15-instructions-long gadgets, as shown in Figure 6. As the gadget
size increases, IPR affects a slightly larger percentage of gadgets,
moving from 84.96% to 86.78% and 88.59%, respectively. This
result is expected, as the longer the gadget, the more opportunities
for the different code transformations of IPR to affect some of its
instructions. In contrast, as longer gadgets are more likely to span
consecutive basic blocks, the coverage of instruction displacement
drops slightly from 90.11% for 10 instructions to 87.42% for 15
instructions. It still contributes though an additional 9% in coverage
when combined with IPR.



5.2 File Size Increase
Instruction displacement unavoidably incurs an increase in the

size of the randomized PE files. Based on our experiments, the size
of the .ropf section that hosts the displaced gadgets was verified
to increase proportionally to the ratio of displaced code regions.
As shown in Table 1 (last column), the average increase over the
original PE file is minimal, at about 2.35%.

The total size of the displaced code regions is slightly larger than
the original displaced code due to the additional jmp instructions that
sometimes are appended at the end of displaced regions, and more
rarely, due to larger displacement offsets in some operands. From
all displaced regions, only 43.54% require a pair of jumps—in the
rest of the cases, the region ends with an indirect branch instruction
that takes care of transferring control to the appropriate location.
Some additional spaced is also consumed to the random padding at
the beginning of the .ropf section.

5.3 Correctness
Any static binary instrumentation technique should preserve the

original semantics of the instrumented program. To ensure that our
transformations do not break the functionality of complex binaries,
we first performed some manual testing with real-world applica-
tions, such as Adobe Reader. After randomization, we verified that a
variety of PDF documents would open and render properly. Further-
more, when running diversified versions of the SPEC benchmarks,
as described below, we did not encounter any issues with erroneous
output.

As an attempt to exercise a more significant amount of code, we
also used an automated testing approach based on the test suite of
Wine [5], as similarly done by previous works [41, 42]. Wine is
a compatibility layer capable of running Windows applications on
several POSIX-compliant operating systems. To validate that the
ported APIs provided by Wine function as expected, Wine comes
with an extensive test suite that covers the implementations of most
functions exported by the core Windows DLLs. We ported to Win-
dows some of Wine’s test suites for 27 system DLLs, comprising a
total of 10,036 different test cases, and used them repeatedly with
randomized versions of those 27 actual Windows DLLs. By check-
ing the outcome between various inputs and expected outputs, we
could confirm that the randomized versions of the DLLs always
worked correctly.

5.4 Performance Overhead
Finally, our last set of experiments focused on evaluating the

performance overhead of instruction displacement. Since the tech-
nique involves extensive code patching and indirection, we expect
to observe an increase in CPU overhead due to the extra executed
jmp instructions and different code locality patterns. To get a bet-
ter understanding of the performance implications, we performed
two sets of experiments. First, we used a subset of the DLLs and
Wine test cases used for the correctness evaluation, leaving aside
any tests that involved the creation of files and other operations that
would mask out any CPU overhead. For each DLL, we measured
the overall CPU user time for the completion of all relevant tests
by taking the average time across multiple runs, using both the
original and the randomized versions of the DLL. Second, we used
the Windows-compatible subset of the standard SPEC CPU2006
benchmark suite.

Figures 7 and 8 show the runtime overhead of instruction displace-
ment (when used in conjunction with in-place code randomization)
over native execution for the Wine and SPEC experiments, respec-
tively. The average overhead across all Wine tests is 0.48%, with
a maximum of 1.87%. Surprisingly, some of the test cases exhibit
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Figure 7: Runtime overhead over native execution for diver-
sified versions of Windows system DLLs, driven by test cases
ported from Wine’s test suite. The average overhead across all
tests is 0.48%.
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Figure 8: Runtime overhead for the SPEC CPU2006 bench-
marks. The average overhead across all benchmarks is 0.36%.

a negative overhead, meaning that the diversified code ran faster
than the original. We observed the same behavior in a stable and
repeatable way across many iterations of the same experiment, with
different instances of randomized binaries. We attribute this speedup
in better caching behavior due to better code locality in the .ropf
section, as different “hot” basic blocks may now be brought in close
proximity.

For the SPEC benchmarks, the average overhead was 0.36%. The
two benchmarks with the highest overhead are xalancbmk and
perlbench (6.38% and 5.34%, respectively), which is expected
given that they are among the largest and more complex ones. A few
other benchmarks exhibited the same negative overhead behavior
that was also observed before, again in a consistent way across many
repetitions.

We analyzed further the Wine and SPEC test cases that exhibited
negative overheads using statistical hypothesis testing. With the null
hypothesis that the mean CPU times for the original and randomized
binaries are identical, Welch’s two-sample t-test failed to reject it.



That is, the means of the two distributions of CPU times for the
original and randomized binaries in each case are not significantly
different from each other with a 95% confidence interval, implying
that these differences fall within the margin of measurement error.

We also explored the overhead of instruction displacement when
used as a standalone technique, without the prior application of
IPR. That is, when all 90.04% of the gadgets that can potentially be
displaced are actually displaced, as opposed to just 12.27% when
used in conjunction with IPR. The average overhead across all
SPEC benchmarks in that case was just 2.06%, denoting that even
extensive but focused patching can still incur a minimal performance
overhead.

6. DISCUSSION AND LIMITATIONS
The two main limiting factors for instruction displacement in

terms of randomization coverage are the precision of code extrac-
tion, and the size of existing basic blocks. Even when using a
state-of-the-art disassembler like IDA Pro, some parts of the code
cannot be extracted, and thus any gadgets in those regions remain
unmodified. As our experiments have shown (Figure 5), when con-
sidering all available gadgets in a binary, instruction displacement
reduces the number of unmodifiable gadgets from 21.45% for stan-
dalone in-place randomization, to 8.96% for the combination of both
techniques. Given that the majority of them are located in unreach-
able regions (6.37%), a more accurate code extraction technique
would allow for improved coverage. On the other hand, only a frac-
tion (0.83%) of all extracted gadgets could not be displaced because
they reside in small basic blocks. For “entry point” gadgets that
still remain available after displacement, we plan to explore further
transformations that can be applied on the displaced instructions, as
discussed in Section 3.2.1.

Given the best-effort nature of our approach, we still cannot
exclude the possibility of an attacker being able to assemble a func-
tional ROP payload using solely the remaining fraction of unmodifi-
able gadgets. An indication about the complexity of ROP payload
construction when working with a limited set of gadgets was pro-
vided by Pappas et al. [41], who showed that two automated ROP
payload construction frameworks were unable to construct a func-
tional payload using only the remaining unmodifiable gadgets by
IPR. With the application of instruction displacement on top of IPR,
this set of gadgets is significantly reduced even further (from 21.45%
to 8.96%), and thus it is reasonable to assume that automated con-
struction becomes even harder.

Besides the significant increase in coverage, instruction displace-
ment also offers an additional benefit over in-place randomization
in terms of the achieved randomization entropy. Although 77.78%
of the gadgets can be randomized by both techniques, the random-
ization achieved through instruction displacement is qualitatively
different. For some gadgets, IPR affects only a few of their instruc-
tions (or even just some of the instructions’ operands), and often
gadgets may exist in one out of just two possible states, leaving
open the possibility of them being still usable after making the
right assumptions. On the other hand, displaced gadgets end up in
random locations that are infeasible to predict. Although in this
work we have restricted the use of instruction displacement only
for gadgets that are not randomized at all by IPR, in the future we
plan to explore more aggressive combinations of the two techniques
to improve randomization entropy even further. As we showed in
Section 5.4, the associated overhead when displacing all possible
gadgets is still modest, at 2.1%, so a small increase in the current
number of displaced regions would have a negligible impact in the
overall overhead.

7. RELATED WORK
The concept of diversification has been the basis of a wide range

of software protections against code injection and code reuse at-
tacks [18, 25, 36]. Address space layout randomization (ASLR) [39,
44] is probably one of the most widely deployed protections against
code reuse attacks. Besides frequent weaknesses related to incom-
plete ASLR coverage [26, 32, 43, 59], however, even proper ASLR
can often be bypassed using memory disclosure bugs that leak the
base address of loaded modules [6, 7, 10, 34, 37, 49, 52].

More fine-grained forms of randomization, complementary to
ASLR, aim to diversify even further the layout and structure of
a process’ code. Randomization can be performed at the func-
tion [1, 11, 12, 33], memory page [9], basic block [3, 4, 55], or
instruction level [22, 30, 41], breaking the assumptions of attackers
about the location and structure of gadgets based on the original
code image. From a deployment perspective, most of the techniques
that fully randomize all code segments depend on the availability
of source code [1, 11, 12, 20, 33], debug symbols [3, 4], the use of
heavyweight dynamic binary instrumentation [20,30] or the assump-
tion of accurate code disassembly [9, 55, 58]. In contrast, in-place
code randomization [41], can be applied on stripped binaries even
with partial disassembly coverage.

Another line of compile-time approaches prevent the construction
of ROP code by generating machine code that does not contain
unintended gadgets, and which safeguards any remaining intended
gadgets using additional indirection [38, 40].

Oxymoron [9] applies fine grained code randomization that is
compatible with code sharing. It offers some resistance to JIT-ROP
attacks [20, 52] by replacing direct branches with indirect branches.
This makes it harder for attackers to harvest code pages by following
the flow of control. Other recent research efforts protect against
JIT-ROP attacks by making code executable but not readable. This
can be achieved by relying on page table manipulation [8], split
TLBs [27], hardware virtualization extensions [19, 54, 57], or tech-
niques based on a lightweight form of software fault isolation [14].

The binary-compatible of these approaches [8, 54, 57] can ben-
efit from the improved randomization coverage achieved by our
proposed instruction displacement technique.

8. CONCLUSION AND FUTURE WORK
The emergence of return-oriented programming attacks and the

limitations of ASLR against their advanced forms have prompted
active research on defenses based on code diversification. From a
practical perspective, however, only a few of those approaches [41]
can be applied for the protection of the complex COTS software
that is being targeted by current in-the-wild exploits, such as closed-
source browsers and document viewers.

In this paper, we focused on the limitations of current binary-
compatible code diversification techniques, and in particular on in-
place code randomization (IPR) [41]. Our main goal is to improve its
randomization coverage, which currently leaves many gadgets unaf-
fected (and others with insufficient randomization entroy), and thus
at the disposal of attackers for the construction of randomization-
resistant ROP payloads. To that end, we have presented instruction
displacement, a code diversification technique based on static binary
instrumentation that (similarly to IPR) does not rely on complete
code disassembly coverage. We have demonstrated that the pro-
posed technique reduces the number of non-randomized gadgets
from 15.04% for standalone in-place code randomization, to 2.77%
for the combination of both techniques (or from 21.45% to 8.96%,
when also considering the non-disassembled code regions), while it
introduces a negligible performance overhead of 0.36%.



As part of our future work, we plan to explore more aggres-
sive combinations of instruction displacement and IPR, facilitated
by the increased flexibility in altering existing code once it has
been displaced, to further improve randomization entropy. We will
also investigate other patching techniques or alterations that will
reduce even further the currently small fraction of remaining non-
randomized gadgets.

Availability
Our prototype implementation is publicly available at: https://github.
com/kevinkoo001/ropf
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