
Practical Binary Code Similarity Detection
with BERT-based Transferable Similarity

Learning
Sunwoo Ahn

Seoul National University
Seoul, South Korea
swahn@sor.snu.ac.kr

Seonggwan Ahn
Seoul National University

Seoul, South Korea
sgahn@sor.snu.ac.kr

Hyungjoon Koo∗
Sungkyunkwan University

Suwon, South Korea
kevin.koo@skku.edu

Yunheung Paek∗
Seoul National University

Seoul, South Korea
ypaek@snu.ac.kr

ABSTRACT

Binary code similarity detection (BCSD) serves as a basis for a wide
spectrum of applications, including software plagiarism, malware
classification, and known vulnerability discovery. However, the
inference of contextual meanings of a binary is challenging due to
the absence of semantic information available in source codes. Re-
cent advances leverage the benefits of a deep learning architecture
into a better understanding of underlying code semantics and the
advantages of the Siamese architecture into better BCSD.

In this paper, we propose BinShot, a BERT-based similarity
learning architecture that is highly transferable for effective BCSD.
We tackle the problem of detecting code similarity with one-shot
learning (a special case of few-shot learning). To this end, we adopt a
weighted distance vector with a binary cross entropy as a loss function
on top of BERT. With the prototype of BinShot, our experimental
results demonstrate the effectiveness, transferability, and practi-
cality of BinShot, which is robust to detecting the similarity of
previously unseen functions. We show that BinShot outperforms
the previous state-of-the-art approaches for BCSD.

CCS CONCEPTS

• Security and privacy→ Software security engineering; Soft-
ware reverse engineering.

KEYWORDS

Binary Analysis, Similarity Detection, Deep Neural Network
ACM Reference Format:

Sunwoo Ahn, Seonggwan Ahn, Hyungjoon Koo, and Yunheung Paek. 2022.
Practical Binary Code Similarity Detection with BERT-based Transferable

∗Co-corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC ’22, December 5–9, 2022, Austin, TX, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9759-9/22/12. . . $15.00
https://doi.org/10.1145/3564625.3567975

Similarity Learning. In Annual Computer Security Applications Conference
(ACSAC ’22), December 5–9, 2022, Austin, TX, USA. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3564625.3567975

1 INTRODUCTION

Today, software arguably plays a pivotal role in operating billions
of computing systems around us, including desktops, laptops, work-
stations, mobile phones, cloud servers, and IoT (Internet of Things)
devices. Each program comprises a collection of instructions, rou-
tines, and data associated with a certain task, most of which (e.g.,
off-the-shelf applications) are distributed as an executable binary
form. Albeit the surge in programs’ complexity and size, software
development has been evolving in a simplified manner with a myr-
iad of well-designed libraries, toolkits, modules, and frameworks
available. While code reuse benefits from high productivity and
handy code maintenance, it comes along with unforeseen threats
such as copyright infringement [90], the prevalence of malware
variants [5], and vulnerable code reproduction [43].

Binary code similarity detection (BCSD) is the task of deter-
mining whether a pair of code snippets (i.e., assembly function) is
similar when the original source code is unavailable. The task serves
as a basis for a wide range of applications, including code clone
detection [19, 20, 23, 24, 26, 40, 46, 63, 65, 79, 88, 92, 96, 97, 100],
malware detection [1, 6, 8, 44, 53, 55, 98], malware family classifi-
cation [38, 47, 59], known vulnerability discovery [10, 81, 93], and
code patching [29, 39, 94]. However, the inference of contextually
underlying meanings from a stripped binary is non-trivial because
1○ a complex compilation process eliminates lots of semantic infor-
mation (e.g., variable name, structure, type, class hierarchy) with
massive transformations, 2○ the form of (semantically equivalent)
binaries can vary depending on compilers, compiler versions, com-
piler optimizations, architectures, or even obfuscation techniques,
and 3○ it is undecidable to prove that two arbitrary programs are
functionally equivalent (i.e., Halting Problem [83]).

To tackle a BCSD problem from such dynamic nature of binary
code generation, early works adopt static approaches with diverse
algorithms, including graph isomorphism detection [3, 25, 101],
symbolic execution [30, 63], or data flow analysis [19, 20, 74],
which helps extract useful information such as instructions,
control flow, and data values. Another direction utilizes dynamic

361

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3564625.3567975
https://doi.org/10.1145/3564625.3567975

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Ahn, et al.

approaches [9, 26, 45, 47, 66, 67, 73, 89] by observing a binary exe-
cution to understand the code semantics better; however, it often
suffers from poor scalability and incomplete code coverage.

Meanwhile, with the rise of machine learning (ML) techniques,
various ML-based approaches have been proposed [23, 24, 28, 60,
64, 65, 84, 92, 95, 100] in the field of BCSD. Moreover, recent ad-
vancements (e.g., deep learning) in the area of natural language
processing (NLP) inspire the inference of machine-interpretable
code [23, 24, 65, 100], which repeatedly demonstrates noticeable
results. For example, InnerEye [100] views an assembly instruction,
a basic block, and a function as a word, a sentence, and a paragraph,
respectively. Lately, the emergence of the BERT architecture [22]
and its descendants [54, 61, 78] assists in better deduction of the
underlying context. A handful of approaches [51, 57, 73, 88, 96]
leverage BERT into various downstream tasks, including BCSD.

The essence of a BCSD problem with ML-based approaches is to
learn a similarity metric from data so that a model appropriately
determines the similarity of a (previously unseen) new sample. As
the number of semantically equivalent binary codes is limited to
learn, learning a similarity metric is a suitable approach (e.g., a
Siamese neural network) for an 𝑁 -way 𝑘-shot classification prob-
lem (i.e., 𝑁 classes with 𝑘 examples of each). A number of prior
approaches [10, 57, 60, 64, 65, 73, 84, 88, 92, 95, 96, 100] utilize a
Siamese neural network [4, 11], which computes a similarity score
with a distance function that represents the proximity of two vec-
tors (e.g., function embeddings). Taking it to the next level, we view
a task of identifying semantically analogous code as an 𝑁 -way one-
shot classification problem (i.e., one-shot learning), a special case
(𝑘 = 1) of an 𝑁 -way 𝑘-shot classification problem (i.e., few-shot
learning in §2). In particular, it fits into a practical scenario that
seeks the presence of a particular function in a pre-built database.

In this paper, we propose BinShot, a BERT-based transferable
similarity learning architecture (with a Siamese neural network)
for effective BCSD. Although the concept of BERT and Siamese
is common for binary similarity detection, our finding reveals
that both a distance function and a loss function within an ar-
chitecture highly affect the performance of a model. Notably, our
main contribution is to suggest to learn a weighted distance vec-
tor with a binary cross entropy loss function (suggested by Koch
et al. [50]), while the existing models solely learn a distance it-
self [10, 57, 60, 65, 73, 88, 92, 96, 100]. Leveraging BERT, we take
two-phase training: pre-training for building a generic model with
assembly code, followed by fine-tuning for building a downstream
model for a BCSD task. The adoption of BERT inherently enhances
the robustness of a model for unseen functions by learning the rela-
tionships between an assembly code (i.e., pre-training), adjusting
it well into a BCSD task (i.e., fine-tuning). Note that one of the
popular loss functions is a contrastive loss [11] used in previous
learning-based approaches [10, 57, 60, 65, 92, 100].

We implemented a full-fledged prototype of BinShot that con-
sists of four components: 1○ pre-processor for learning preparation,
2○ pre-trainer for building a machine code model, 3○ fine-tuner
for building a code similarity model, and 4○ predictor for detecting
binary similarity with a given code snippet (i.e., function). We build
1, 400 binaries from varying source code, which contains around
1.77 million functions. Our evaluations for both effectiveness and

transferability demonstrate that BinShot surpasses previous state-
of-the-art models for detecting binary code similarity, including
Gemini [92], Asm2Vec [23], PalmTree [57], and DeepSemantic [51].
Further, we set up a realistic scenario that detects vulnerable func-
tions. Surprisingly, previous approaches [23, 51, 57, 92] reveal a
quite low accuracy (< 15%) due to large false positives, remaining
their practicality questionable. Finally, we visualize how BinShot
can distinguish a binary function from a (dis)similar one.

The following summarizes the contribution of our paper:
• We propose BinShot that learns a weighted distance vector
with a binary cross entropy atop the BERT-based Siamese
architecture for BCSD.

• We design and implement the prototype of BinShot. We
have open-sourced BinShot1 to foster the area of BCSD in
the future.

• We evaluate BinShot to present its effectiveness, transfer-
ability, and practicality by comparing it with state-of-the-art
baseline models.

• We demonstrate that BinShot represents similar embed-
dings well in a vector space via visualization.

2 BACKGROUND

BERT. BERT [22] is a transformer-based ML architecture that
originates from the domain of NLP. The Transformer [86] architec-
ture gains high popularity in text processing tasks with noticeable
results. It adopts 1○ the self-attention mechanism that aims to in-
fer contextual information per each word (considering a position)
within the input sentence, and 2○ the design that allows for par-
allel processing during training on a large volume of a dataset,
which reduces training time over sequential processing like Long
Short-Term Memory (LSTM) [37]. The BERT architecture lever-
ages a careful design choice from the Transformer’s encoder (e.g.,
multi-head self-attention) into various downstream applications
with two major phases (i.e., pre-training and fine-tuning). First, the
pre-training of BERT aims to capture both token-level and sentence-
level contextual information, building a generic model that contains
embedding vectors of each token. A final input embedding repre-
sentation considers a position (e.g., location of a word in a sentence)
and a segment (e.g., a sentence that a word belongs to) as well
as a token itself. For capturing hidden context from a sentence,
pre-training performs two sub-tasks: masked language modeling
(MLM) and next sentence prediction (NSP). MLM randomly masks
a certain portion of tokens in a given sentence (e.g., 15% in the
original BERT scheme), exploiting unlabeled data (i.e., masked posi-
tions) to yield labels (i.e., original tokens). The special token, [CLS],
is placed at the beginning of every input, where [SEP] represents
a token separator so that two sentences can be concatenated as
a single input. Meanwhile, NSP predicts if the next sentence per-
tains to the current one. Note that pre-training does not require
a laborious labeling process (i.e., unsupervised learning), creating
a generic model to be served as a base knowledge layer to build
from. Second, the fine-tuning phase of BERT improves a generic
model by retraining weights with another dataset for a specialized
user-defined task (i.e., supervised learning), which allows for being
adjusted to task-oriented contextual representations. In this paper,

1https://github.com/asw0316/binshot

362

https://github.com/asw0316/binshot

Practical Binary Code Similarity Detection with BERT-based Transferable Similarity Learning ACSAC ’22, December 5–9, 2022, Austin, TX, USA

Xi

Xj

Parameter Sharing,Inputs, Siamese Neural Network,

LW

GW (Xj)

GW (Xi)

FW (Xi, Xj)

Pair Distance

Figure 1: A popular loss function in a Siamese neural network (NN):

a contrastive loss (𝐿𝑐) using a twin NN. G, F, X, and W denotes an

output vector, similarity metric, input, and weight, respectively.

we build a pre-trained BERT model for binary code representation
and a fine-tuned model for BCSD as a downstream task.
Siamese Neural Network. A Siamese neural network [4] was first
introduced for verifying signatures, in which multiple identical sub-
networks extract features from multiple inputs while training. The
gist of the Siamese neural network is to compute a distance function
that represents how two feature vectors are close together; that is,
a set of similar inputs should be encoded as adjacent as possible,
whereas that of dissimilar inputs should be placed as far as possible.
Unlike traditional approaches (e.g., support vector machines) that
require known labels ahead of training time for a classification
problem, the architecture is suitable for which there are a large
number of unknown categories with a limited number of datasets
at the time of training [49]. More precisely, we can formally define
a similarity metric (𝐹𝑊) between two inputs (𝑋𝑖 and 𝑋 𝑗) with a
distance function (𝐷), where𝐺𝑊 (𝑋) represents an output vector
in a neural network that is parameterized by weight (𝑊) as follow:

𝐹𝑊 (𝑋𝑖 , 𝑋 𝑗) = 𝐷 (𝐺𝑊 (𝑋𝑖),𝐺𝑊 (𝑋 𝑗)) (1)

The distance function in Equation 1 between two 𝑛-dimensional
vectors may vary [68], including an L1 norm, L2 norm, or cosine
distance. The similarity metric can be learned by seeking𝑊 that
minimizes a loss function over a training set. With a distance func-
tion, a Siamese neural network regards the resulting distances as
the degree of two inputs’ similarity. A Siamese neural network
relies on a pre-defined loss function as well as a distance function
that one chooses from. The following exemplifies one of the pop-
ular loss functions (Figure 1), contrastive loss (𝐿𝑐 in Equation 2).
A contrastive loss minimizes the distance of positive pairs while
maximizing the distance of negative pairs. Note that 𝑌 represents a
label (0 or 1) for the pair of inputs (𝑋𝑖 , 𝑋 𝑗).

𝐿𝑐 (𝑊,𝑌,𝑋𝑖 , 𝑋 𝑗) = 𝑌 1
2 (𝐹𝑊)2 + (1 − 𝑌) 12 (𝑚𝑎𝑥 (0, 1 − 𝐹𝑊))2 (2)

Few-shot Learning. Few-shot learning differs from classical
supervised learning in that it aims to learn how to learn (e.g., two
objects are alike) instead of letting a model directly recognize a label
(e.g., an object is a dog). The main idea [4, 11, 50, 80] stems from
computer vision tasks, which are inspired by a human capability
that learns a new object based on previously acquired information
with a limited number of instances. In general, classifying 𝑁 classes
with 𝑘 samples per each category (i.e., few samples) is known as
an 𝑁 -way 𝑘-shot classification problem. Simply put, a dataset is
divided into two mutually exclusive sets: a support set (𝑁 × 𝑘) for
training and a query set for testing, followed by learning similarity

between feature vectors. A Siamese neural network is one of the
few-shot learning enablers, which fits well into BCSD. Ideally, a well-
learned model from other function pairs can successfully identify
a distance from a given (possibly unseen) function pair with the
model.

3 BINARY CODE SIMILARITY DETECTION

Problem Definition and Scope. A BCSD task is defined as iden-
tifying the proximity of two or more machine codes (i.e., assembly)
when source code is unavailable. The task may vary depending
on different aspects of code comparison. For instance, the com-
parison granularity of a code snippet can be an entire program,
function, basic block, or even instruction. One may view the detec-
tion task as a code search problem, in which the number of code
pieces can be one-to-one, one-to-many, or many-to-many. Further-
more, binary code may hold equivalent semantics with diverse
code transformations from different compilers, different compiler
options/versions/optimization levels, different architectures, and
obfuscations. Meanwhile, it may represent similar semantics with
distinct updates from different source code versions or bug fixes
(patches). In this work, we deal with detecting similar code snip-
pets whose transformation solely originates from cross-compiler
and cross-optimization-levels for the x86_64 architecture. We seek
a similar binary function pair from a prepared function corpus
(one-to-many setting) in practice.
Open Challenges. The dynamic nature of diversified binary code
generation inevitably makes BCSD quite challenging. It is unde-
cidable to prove that two arbitrary programs are functionally and
semantically equivalent (i.e., Halting Problem [83]). Note that our
methodology is agnostic to other transformations from compiler
options or versions; however, we deliberately do not consider the
differences in code semantics from cross-source-versions (e.g., up-
dates, bug repair) due to the absence of quantitative metrics for the
semantic gap. Another challenge arises from code obfuscation tech-
niques that often blur the original semantics with packing, random
code insertion, customized virtual machines, etc.

4 BINSHOT DESIGN

4.1 BinShot Overview

Figure 2 illustrates the whole workflow of BinShot, which mainly
consists of four components as follows:
Pre-processor. With a binary corpus, we prepare a dataset that
can be readily fed into a BERT model for training (1○). Using a
reverse engineering tool, we obtain all disassembled instructions.
Next, we convert a naïve instruction into a concise form (Table 4
in Appendix A), building the database of normalized functions (NFs)
with normalization rules proposed by DeepSemantic [51].
Pre-trainer. Once all NFs are ready, we build a generic BERTmodel
with pre-training, being able to emit an embedding per function (2○).
Note that a generic BERT model learns the relationship between
instructions, which makes the final model robust against unseen
functions. Akin to NLP’s pre-trained language models, this model
for an assembly language allows for repurposing it to varying
downstream tasks.
Fine-tuner. Next, we re-train the pre-trained model (i.e., fine-
tuning) to meet our purpose; BCSD (3○). To this end, we prepare

363

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Ahn, et al.

① Preprocessing for Training Preparation

Executables
(Corpus)

② Building a Generic Model for Assembly ③ Building a Special Model for Code Similarity

Disassembled
Functions

Normalized
Functions

BERT

Ins 0 [MASK] Ins 2 [EOS][SOS]

Feed-forward Neural Network

Pre-trained
BERT Model

…
Logits

Similar
Dissimilar

Downstream Layers Fine-tuned
BERT Model

④ Detecting Similarity

Function
Embeddings

Downstream Model

Target
Function

Prediction: similar?

Pre-processer Pre-trainer Fine-tuner Predictor

Figure 2: The overall workflow of BinShot that consists of four components: 1○ a pre-processor (§4.2) that generates a dataset in preparation

for training, 2○ a pre-trainer (§4.3) that builds an assembly representation model (i.e., pre-trained BERT), 3○ a fine-tuner (§4.4) that constructs a

BCSD model (i.e., fine-tuned BERT), and 4○ a predictor (§4.5) that judges the similarity of a target function.

another dataset with function pairs and their labels for a BCSD task.
The fine-tuned model predicts if a function is analogous to another.
Predictor. As a final step, using the fine-tuned BERT, we build a
database that contains all function vectors of our interest for further
comparison (4○). A downstream model takes a function pair as an
input, seeking any similar function with a series of predictions.

4.2 Preprocessor: Learning Preparation

A pre-processing step encompasses a conversion needed to feed
a wide range of collected executable binaries (See Table 1) into a
neural network, including disassembly and normalization.
Disassembly Process. We first disassemble every instruction in a
code region of each executable with a state-of-the-art reversing tool
(e.g., IDA Pro [35]). We generated the whole binary corpus with de-
bugging information available (e.g., obtaining function boundaries)
for training a better model with accurate disassembly. Note that we
assume a stripped binary for further testing.
Well-balanced Instruction Normalization. Feeding machine
instructions as they are into a neural network raises an out-of-
vocabulary (OOV) problem because the number of possible tokens
(i.e., an opcode, operands, or a combination of both) would be pro-
hibitively huge. For example, a four-byte immediate value or a
relative address as an operand could hold 232 − 1 (i.e., around four
billion) different tokens. A large number of OOV may end up incur-
ring the failure of meaningful input embedding generation. In this
regard, we adopt a strategy of well-balanced instruction normaliza-
tion that is introduced by DeepSemantic [51], which strikes a bal-
ance between expressing binary code representation that preserves
the original semantics while maintaining a reasonable amount of
tokens to avoid OOV (Interested readers refer to Appendix A).

4.3 Pre-trainer: Model for Assembly

BinShot adopts a BERT-based model (but NSP) that conforms to
two-step training; the first one is pre-training (2○ in Figure 2) that
plays a role to train a generic model for assembly codes.
MLM task. We take the identical strategy with the original BERT,
replacing 15% of input tokens (instructions) with a mask symbol
(i.e., [MASK] token). The parameters of MLM, \𝑚 , are optimized
by solving the following optimization problem:

\𝑚 = argmin
\𝑚

∑︁
𝑡 ∈𝑇

𝑝 (𝑡 |𝑦) log 𝑝 (𝑡 |𝑦) (3)

𝑦 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐺𝑚 (𝑋)) (4)
where 𝑡 , 𝑇 , 𝑦, and 𝑦 denote a token, a set of tokens, an original
token before masking, and a predicted token for MLM, respectively.

Pre-trained BERT Model

Xi

Xj

Parameter Sharing,Inputs, Siamese Neural Network,

LW

BERT(Xi)

BERT(Xi)

F(Xi, Xj) p(Xi, Xj)

FC Sigmoid

Figure 3: Siamese neural network for building a BCSD model. Our

model learns a weighted distance vector from a labeled dataset (i.e.,
a set of two functions and a label). X, W, L, F, FC, and p represent an

input, weights, loss, distance vectors, a fully connected layer, and

the probability of code similarity.

𝐺𝑚 (𝑋) represents the output vector of a fully connected layer from
an MLM classifier with an input function 𝑋 . At a high level, MLM
learns to predict an appropriate token in place of a masked token,
aiding in capturing the context between individual instructions.
Alternatives to an NSP task. We exclude NSP from the original
BERT architecture because, unlike a neighboring sentence in NLP,
the relationship between functions is determined by a function
invocation rather than their locations, rendering the next function
prediction (i.e., NSP) pointless. Although we do not directly take a
function call into account, well-balanced instruction normalization
implicitly deals with a significant libc call by defining it as a
separate word. Otherwise, the normalization process recognizes
either external library calls (e.g., throughout PLT; procedure linkage
table, and GOT; global offset table) or internal function calls (e.g.,
other functions defined within an executable). Besides, it views an
indirect call (e.g., call reg8) or recursive call (e.g., call self)
as a distinguishing instruction for better contextual inference.

4.4 Fine-tuner: Model for Code Similarity

Based on a generic BERT model with a large swath of binaries,
we define a downstream task (3○ in Figure 2); BCSD. To this end,
we leverage a Siamese neural network into a classifier, learning
a weighted distance from a labeled dataset (i.e., (NF1, NF2, {0,1})
where 1 for a similar pair and 0 for a dissimilar one). Figure 3
illustrates the Siamese architecture for the fine-tuner in BinShot.
The following equation shows how to compute a distance vector
(𝐹 (𝑋𝑖 , 𝑋 𝑗)) between two function embeddings based on the BERT
model (𝐵𝐸𝑅𝑇 (𝑋)) where 𝐷 represents a distance function such as
an element-wise absolute error (k=1) or a squared error (k=2).

𝐷 (𝑋,𝑌) = (𝑥𝑖 − 𝑦𝑖)𝑘 , 𝐹 (𝑋𝑖 , 𝑋 𝑗) = 𝐷 (𝐵𝐸𝑅𝑇 (𝑋𝑖), 𝐵𝐸𝑅𝑇 (𝑋 𝑗)) (5)

364

Practical Binary Code Similarity Detection with BERT-based Transferable Similarity Learning ACSAC ’22, December 5–9, 2022, Austin, TX, USA

Then, our binary classifier learns a weighted distance vector with
the following binary cross entropy loss function:

𝐿 = 𝑌 log𝑝 (𝑋𝑖 , 𝑋 𝑗) + (1 − 𝑌) log(1 − 𝑝 (𝑋𝑖 , 𝑋 𝑗)) (6)

𝑝 (𝑋𝑖 , 𝑋 𝑗) = 𝜎 (𝐹𝐶 (𝐹 (𝑋𝑖 , 𝑋 𝑗))) (7)
where Y is a label for (𝑋𝑖 , 𝑋 𝑗). 𝐹𝐶 (𝑋) = 𝑊𝑋 + 𝑏 represents the
output vector of a fully connected layer with weights (𝑊), and 𝜎
means a Sigmoid function (𝜎 (𝑧) = 1

1+𝑒𝑧), ranging from 0 to 1 for the
probability of the code similarity with a function pair (𝑝 (𝑋𝑖 , 𝑋 𝑗)).
Loss Function. It is noteworthy mentioning that we carefully
choose an appropriate loss function for a BCSD task. One of the
common scenarios is to search for a certain function or a series of
particular functions of one’s interest. Assuming that each function
has a single sample, the task of identifying semantically analogous
code is aligned with an 𝑁 -way one-shot classification problem,
which is a special case (𝑘 = 1) of an 𝑁 -way 𝑘-shot classification
problem (See §2). In essence, we employ a weighted distance learning
with the Siamese architecture that has been proposed by one-shot
learning [50], which defines a loss function as a binary cross entropy
for binary classification. In the same vein, we solve an optimization
problem with the loss function (Equation 6), seeking the optimized
parameters (\𝑑) for a downstream model. Meanwhile, previous
learning-based BCSD models [10, 57, 60, 65, 92, 100] often employ
a contrastive loss 𝐿𝑐 [11]. We empirically confirm that BinShot
equipped with our loss performs better for the inference of an
unseen function (See §6) than other state-of-the-art BCSD models.

4.5 Predictor for BCSD

With the fine-tuned model for BCSD, a predictor (4○ in Figure 2)
takes a function pair as an input; one as a target function to compare
with, and the other from a database. Note that a look-up process
could speed up by i) pre-computing function embeddings in the
database and ii) inserting unseen function vectors into the database.
Once the predictor acquires two function vectors with 𝐵𝐸𝑅𝑇 (𝑋𝑖)
and 𝐵𝐸𝑅𝑇 (𝑋 𝑗), it computes a probability according to Equation 5
and Equation 7. BinShot is trained to adjust the output to be 0
(negative) or 1 (positive) as it applies a Sigmoid function for ob-
taining a final output. Therefore, we set 𝑝 = 0.5 as a threshold to
determine if the two functions are similar.

5 IMPLEMENTATION

Static Binary Analysis. We leverage one of the state-of-the-art
binary reverse engineering tools, IDA Pro 7.6 [35], into disassem-
bling binaries and extracting fruitful static binary information. We
wrote a script with built-in IDAPython APIs [34] that can extract a
list of assembly functions, cross references (i.e., call graph), section
names, string references, and external library calls, facilitating fur-
ther instruction normalization. Other binary reverse engineering
tools such as angr [2], Ghidra [70], or radare2 [77] would suffice
for our static analysis purpose.
BinShot Implementation. We develop BinShot with Py-
Torch [76], one of the most popular frameworks for ML. At the heart
ofBinShot, we implement the prototype using BERT [22, 32, 41, 91]
and a Siamese neural network [50]. For a distance function de-
scribed in §2, we adopt an squared error that generates a distance
vector as an output because our experiment shows that overall

Table 1: Our binary corpus.We build 1.4K binaries that contain 1.77M

functions, obtaining 18K unique tokens after the well-balanced in-

struction normalization process.

Dataset Binaries Functions Basic blocks Instructions Tokens

GNU utilities 1,000 439,036 3,965,532 22,137,920 1,244
SPEC2006 176 407,277 4,661,761 28,307,441 9,631
SPEC2017 120 755,297 9,336,587 52,940,593 11,932
Real-world programs 104 169,065 2,422,651 14,269,468 8,892

Total 1,400 1,770,675 20,386,531 117,655,422 18,449

performance with the squared error was slightly better than that
with an absolute error. We heuristically pick the following hyper-
parameters that demonstrate the best performance: the 256 dimen-
sions for instruction embeddings, 128 hidden layers, eight attention
layers and heads (for the Transformer structure), 256 maximum
length of tokens, and three token encoder layers. We use the Adam
optimizer [48] with a learning rate of 0.0005 and the dropout al-
gorithm [36] for both pre-training and fine-tuning. The dropout
rate is 0.2 for token encoder layers and 0.1 for the other layers. We
employ a linear learning rate warm-up strategy [62] and a gradient
clipping strategy [72] for stable training results. The number of
parameters for building the BinShot model is 6,815,362. We train
BinShot for 20 epochs with a batch size of 32.

6 EVALUATION

Prior BCSD studies with ML-based approaches predominately focus
on effectiveness (i.e., accuracy, F1 score) and efficiency (i.e., runtime
performance). In this paper, we attempt to evaluate BinShot in
terms of practicality by reasoning dataset generation and usefulness
of a result by closely looking into interesting cases as well as previ-
ous metrics. To this end, we define two different test sets to compare
BinShot with baseline models. Additionally, we demonstrate that
a group of similar function embedding vectors are indeed close
together in a space with a visualization technique (i.e., t-SNE [85]).
Environment. We evaluate BinShot on the server equipped with
two Intel Xeon Gold 6226R CPUs (with 32 cores in total) running
at 2.90 GHz, 256 GB RAM, and two NVIDIA RTX A6000 GPU cards.
Note that we had a single GPU card for performance assessment.
Evaluation Metrics. We use the following metrics for BinShot:
a precision (P), recall (R), F1 score (F), and accuracy (A) where 𝑇𝑃 ,
𝐹𝑃 ,𝑇𝑁 , and 𝐹𝑁 are the number of true positive, false positive, true
negative, and false negative cases, respectively.

P =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, R =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, F =

2 × P × R
P + R

, A =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
(8)

6.1 Dataset

Binary Corpus. Table 1 summarizes our corpus for evaluation.
We collect varying applications in our corpus: executable bina-
ries from GNU utilities, SPEC2006, SPEC2017, and real-world
programs of our choice. GNU utilities include binutils (v2.26),
coreutils (v8.30), diffutils (v2.8), and findutils (v4.7.0)
that have been extensively evaluated in previous works [3, 9, 19–
21, 23, 24, 26, 28, 51, 57, 60, 65, 73, 74, 89, 93, 100]. SPEC2006
and SPEC2017 provide a series of standardized CPU-intensive
benchmark suites. We also gather 11 real-world programs that

365

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Ahn, et al.

Whole Dataset

(50%) Similar
Function Pairs

(50%) Dissimilar
Function Pairs

Training Set
(80%)

Validation Set
(10%)

Test Set (10%)

Normalized
Functions (NFs)

Pre-training
Dataset

Fine-tuning Dataset for Binary Similarity Task

① Binary Corpus
Disassembly Normalization

Refined
Dataset

Filtering

②

⑤

③

④

Figure 4: Dataset generation for similarity learning. All normal-

ized functions from the raw binary corpus (1○) constitute the whole

dataset (2○) for pre-training. We refine a dataset (3○) by filtering out

too small/large functions, followed by generating function pairs (4○),

splitting them into a training, validation, and test set (5○).

are available as popular open-source projects from Github, in-
cluding BusyBox (v1.34.1) [7], Libgmp (v6.2.1) [31], ImageMagick
(v7.0.10) [42], Libcurl (v7.78.0) [18], LibTomCrypt (v1.18.2) [58],
OpenSSL (v1.1.1f) [71], SQLite (v3.30.1) [82], zlib (v1.2.8) [99], PuT-
TYgen (v0.76) [75], Nginx (v1.16.1) [69], and vsftpd (v3.0.3) [87].
With two different compilers (i.e., GCC v5.4, Clang v6.0.1) and four
different compiler optimization levels (i.e., O0–O3), we generated
1, 400 executable binaries as a whole.
Refining Dataset. We refine our dataset (3○ in Figure 4) before
creating similar and dissimilar function pairs by filtering out certain
functions depending on the size of a function (i.e., the number of
instructions within). Namely, we set up a threshold of two outliers:
too small function where the number of instructions is less than
or equal to 𝑚, and too large function where that of instructions
is greater than 𝑛. The rationale behind this decision is that i) too
small function may not often return a semantically meaningful
result, ii) chances are slim that a target function (e.g., containing a
vulnerability) is too trivial, and iii) BERT has a limitation to handle
too long sequences (i.e., large function) while training. For our
experiment, we set𝑚 = 5 and 𝑛 = 250 in BinShot, which can be
adjustable. In our dataset, the proportions of too large functions
and too small functions are 4.66% and 16.47%, respectively.
Dataset Generation for Learning. Figure 4 depicts an overview of
generating the whole dataset (2○) from a binary corpus (1○), which
can be fed into the BERT architecture. Borrowing the well-balanced
instruction normalization strategy [51], the whole 117,655,422 in-
structions (from 1,770,675 functions) result in 18,449 vocabularies
(§4.2). Because each vocabulary is dealt with as a token, we obtain
18,454 tokens, including five special ones for BERT: [SOS]; start
of a function, [EOS]; end of a function, [UNK]; unknown token,
[MASK]; mask symbol, and [PAD]; padding symbol. Recall that a
pre-trainer builds a generic BERT model with the pre-processed
dataset (i.e., NFs). Once the instruction normalization step is com-
plete, we create a set of similar and dissimilar function pairs for
fine-tuning. We define a function pair to be similar two function
names are identical from a binary built with either a different com-
piler or optimization level. We exclude the cases where a pair of
function bodies are identical after instruction normalization be-
cause it causes a distance of 0 in the Siamese neural network, which

Table 2: Summary of a distance function, loss function, and archi-

tecture for baseline models, BinShot, and its variant (*). GNN and

PV-DM represent Graph Neural Network and Distributed Memory

Model of Paragraph Vectors.

Model Distance Function Loss Function Architecture

Gemini Cosine distance Contrastive loss GNN, Siamese NN
Asm2Vec Cosine distance Log probability PV-DM
PalmTree Cosine distance Contrastive loss BERT, GNN, Siamese NN
DeepSemantic None Cross entropy BERT, Softmax classifier
BinShot-CTR* L2 norm Contrastive loss BERT, Siamese NN
BinShot Weighted squared error Binary cross entropy BERT, Siamese NN

hinders the training process (e.g., Figure 8 in Appendix A). For
example, the function openat_safer (from mkdir) compiled with
gcc and O1 and the one compiled with clang and O2 are similar
as long as two function bodies after normalization are disparate.
We adopt negative sampling (with the ratio of 1:1) for dissimilar
function pairs, selecting different functions from different binaries.
In our experiment, we create 5, 259, 310 function pairs in total (4○
in Figure 4). We split the whole pairs into three disjoint groups for
training, validation, and test dataset with the ratio of 8:1:1, while
maintaining half and half for similar and dissimilar pairs.
OOV. In our setting, there are unique 18, 280 tokens in a training
set and 16, 166 tokens in a test dataset. The 64 tokens were merely
discovered in a test set (i.e., missing them in a training set), in which
OOV accounts for 0.40% of the whole tokens.

6.2 Effectiveness

In this section, we evaluate the effectiveness of BinShot with pre-
vious BCSD approaches using deep learning techniques. Table 2
summarizes a distance function, loss function, and architecture for
each approach, which largely impacts performances.
Baseline. As a baseline, we assess varying state-of-the-art BCSD
models, including Gemini [92], Asm2Vec [23] 2, PalmTree [57], and
DeepSemantic [51]. In the case of PalmTree, we leverage the pre-
trained model that is publicly available [56] to build a downstream
model with our datasets for comparison.We follow the hyperparam-
eters from the original implementations unless otherwise stated.
BinShot Variant. To show the effectiveness of a loss function,
we additionally generate a BinShot variant, BinShot-CTR, which
adopts a contrastive loss (Equation 2) with an L2 norm as a distance
function (Equation 1).
Similarity Threshold. We choose a threshold for similarity pre-
diction that maximizes an F1 score in the case of Gemini [92],
Asm2Vec [23], PalmTree [57], and BinShot-CTR (Appendix B).
Test Set Evaluation. Recall that the test set (§6.1) contains the
same rate of similar and dissimilar function pairs. Figure 5 demon-
strates the effectiveness of BinShot, compared with four baseline
models (Gemini [92], Asm2Vec [23], PalmTree [57], DeepSeman-
tic [51]) and the BinShot variant model (BinShot-CTR). We mea-
sure an accuracy, precision, recall, and F1 score with i) the whole
dataset and ii) the datasets that are separated with all 36 combina-
tions across different compilers and optimization levels (e.g., (gcc-
O0, gcc-O0), (gcc-O0, clang-O0), . . . , (clang-O3, clang-O3)). Note

2As the original implementation [23] runs on the Windows platform, we adopt a
version from https://github.com/oalieno/asm2vec-pytorch for handy comparison.

366

https://github.com/oalieno/asm2vec-pytorch

Practical Binary Code Similarity Detection with BERT-based Transferable Similarity Learning ACSAC ’22, December 5–9, 2022, Austin, TX, USA

0.935 0.917 0.936 0.934

0.698 0.711

0.864

0.780

0.947 0.932 0.951 0.944
0.975 0.972 0.988 0.980

0.618 0.618

1.000

0.764

0.997 0.997 0.999 0.998

0.6
0.7
0.8
0.9
1.0

Accuracy Precision Recall F1 score

Gemini Asm2Vec PalmTree DeepSemantic BinShot-CTR BinShot

(a) Accuracy, precision, recall, and F1 score of six approaches for the whole test set.

Precision Recall F1 scoreAccuracy

0.911

0.668

0.925 0.979 0.998 0.935

0.756

0.956 0.979 0.997 0.944 0.961 0.953 0.995 0.999

0.654 0.652

1.000 0.941
0.817

0.947 0.986 0.999

0.789

(b) Accuracy, precision, recall, and F1 score of six approaches across all combinations of a compiler and optimization level. We separate the

dataset with a different set of compilers or optimization levels to confirm the effectiveness of BinShot. The numbers represent medians.

Figure 5: Results of BCSD comparison with the test set. BinShot surpasses the others with the lowest variations in accuracy and F1 score.

that the latter dataset is designed for a better understanding of
the impact of different configurations (i.e., cross-compilers, cross-
optimization-levels) to deduce code similarity. Figure 5a clearly
shows that BinShot outperforms all other state-of-the-art mod-
els for BCSD. Likewise, Figure 5b supports that the performance
of BinShot stays stable with a low variance regardless of any
combination of a compiler and optimization level. We hypothesize
that learning a weighted distance helps BinShot outperform other
models because BinShot can understand a relationship among all
elements of distance vectors, rendering a sophisticated inference
feasible. Meanwhile, other models oversimplify a relationship be-
tween the two functions based on a scalar value (i.e., distance from
feature vectors of them). It is also noted that the performance gap
between BinShot and BinShot-CTR arises from different distance
functions rather than loss functions.

6.3 Transferability

This section delineates empirical results of model transferability;
specifically, we raise the following research questions: 1○ how well
is the model learned from a dataset 𝑋 capable of inferring binary
similarity in another dataset𝑌 ? and 2○which state-of-the-art model
performs the best? The higher transferability means that a model is
more generalizable or scalable. Note that our transferability experi-
ment attempts to answer that a certain model could be generalizable
when applying it to a completely different binary group (rather
than a compartmentalization of train, validation, test) in practice.
Experimental Setup. We conduct another experiment that utilizes
a binary corpus from SPEC2006 and SPEC2017 (Table 1), building
two fine-tuned models with BinShot because they contain the
largest number of functions that could be further generalizable.
Likewise, using Gemini [92], Asm2Vec [23], PlamTree [57], DeepSe-
mantic [51], and BinShot-CTR, we build twelve different models
with the same dataset (i.e., SPEC2006, SPEC2017). Then, we have
each model infer similarity with unseen datasets (i.e., GNU utilities,

real-world programs). Figure 6 briefly shows the results of infer-
ence across different models, including accuracy, precision, recall,
and F1 score. As seen in both Figure 6a and Figure 6b, we observe
that BinShot mostly achieves better performance than others but
GNU utilities. Namely, the accuracy and F1 score with the BinShot
model are higher than those with four baseline models and the
BinShot variant; for example, the F1 score for real-world programs
(rightmost bar in Figure 6b) when applying transfer learning from
SPEC2017 indicates the best performance of all.
Results. We obtain the following insights with our experimental
outcomes: 1○ a fine-tuned model with BinShot could be applicable
to other (unseen) datasets in general, indicating that a weighted dis-
tance learning with a Siamese neural network appropriately works
as intended, 2○ training and test set have evenly distributed based
on Figure 6a and Figure 6b that are similar to Figure 5b, and 3○ func-
tions from SPEC2006 do not have largely those from SPEC2017
in common because the mutual inferences (e.g., SPEC2006-based
model toward SPEC2017 inferences, SPEC2017-based model toward
SPEC2006 inferences) do not havemuch difference from the ones for
real-world programs. Last but not least, BinShot shows relatively
poor performance on GNU utilities. With a careful investigation,
we found that GNU utilities have quite a few sharing functions
across different binaries. This is because, coreutils have a static
library (i.e., libcore.a) in common when compiling various utility
programs, which inherently contain identical (normalized) func-
tions in multiple binaries (See Appendix D). Note that our finding
is aligned with the observation from Koo et al. [52].

6.4 Vulnerable Function Detection

In this section, we set up a realistic scenario that detects a vulnerable
function in a binary to demonstrate the practicality of BinShot.
Scenario Setup. Table 3 displays three programs that contain nine
vulnerable functions along with six common vulnerabilities and
exposures (CVEs). Each program has eight variants generated by

367

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Ahn, et al.

0.5

0.6

0.7

0.8

0.9

1.0

A P R F1 A P R F1 A P R F1 A P R F1

GNU Utilities SPEC 2006 SPEC 2017 Real-world Programs

Gemini Asm2Vec PalmTree DeepSemantic BinShot-CTR BinShot

(a) Results of inferences from the models with the SPEC2006 dataset

0.5

0.6

0.7

0.8

0.9

1.0

A P R F1 A P R F1 A P R F1 A P R F1

GNU Utilities SPEC 2006 SPEC 2017 Real-world Programs

Gemini Asm2Vec PalmTree DeepSemantic BinShot-CTR BinShot

(b) Results of inferences from the models with the SPEC2017 dataset

Figure 6: Results of transferability experiments. As expected, the inferences to the same dataset (e.g., SPEC2006→ SPEC2006, SPEC2017→
SPEC2017) are the highest values across all metrics. Empirically, BinShot demonstrates the best generalizable capability when applying its

model to other datasets. We explain why BinShot shows poor performance on GNU utilities in §6.3.

Table 3: Results of detecting vulnerable functions with BinShot. An asterisk (*) indicates that our model includes a program (but a different

version) during training. Each symbol of ✓and ✗ denotes detection success and failure, while - denotes a case that a reversing tool fails to

discover a function boundary. BinShot achieves the best performance in the accuracy (A) and recall (R) while others show the poor accuracy.

Gemini Asm2Vec PalmTree DeepSemantic BinShot-CTR BinShot

Program CVE Vulnerable function O0–O3 A/R O0–O3 A/R O0–O3 A/R O0–O3 A/R O0–O3 A/R O0–O3 A/R

OpenSSL

v1.0.1e*

2014-0160 [13]

tls1_process_heartbeat ✓✓✓✓

0.0033/
1.0000

✓✓✓✓

0.1179/
1.0000

✓✓✓✓

0.0140/
1.0000

✓ ✗✓ ✗

0.3656/
0.6000

✓✓✓✓

0.0033/
1.0000

✓✓✓✓

0.9009/
1.0000

dtls1_process_heartbeat ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓ ✗✓ ✗ ✓✓✓✓ ✓✓✓✓
2014-0221 [14] dtls1_get_message_fragment ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓ ✗✓ ✗ ✓✓✓✓ ✓✓✓✓
2014-3508 [15] OBJ_obj2txt ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓ ✗ ✓✓✓✓ ✓✓✓✓
2015-1791 [17] ssl3_get_new_session_ticket ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✗ ✓✓✓ ✓✓✓✓ ✓✓✓✓

NTP

v4.2.7p10

2014-9295 [16]

crypto_recv - - - - 0.0055/
1.0000

- - - - 0.1588/
1.0000

- - - - 0.0083/
1.0000

- - - - 0.4505/
1.0000

- - - - 0.0064/
1.0000

- - - - 0.7940/
1.0000ctl_putdata ✓✓✓ - ✓✓✓ - ✓✓✓ - ✓✓✓ - ✓✓✓ - ✓✓✓ -

configure ✓ -✓✓ ✓ -✓✓ ✓ -✓✓ ✓ -✓✓ ✓ -✓✓ ✓ -✓✓

libav v0.8.3 2012-2776 [12] decode_cell_data ✓✓✓✓
0.0007/
1.0000 ✓✓✓✓

0.1215/
1.0000 ✓✓✓✓

0.0065/
1.0000 ✗ ✓✗ ✓

0.0003/
0.5000 ✓✓✓✓

0.0007/
1.0000 ✓✓✓✓

0.9497/
1.0000

two different compilers (i.e., GCC v5.4, Clang v6.0.1) and four dif-
ferent compiler optimization levels (i.e., O0–O3). We arrange the
following three assumptions close to a real setting: 1○ the data-
base of vulnerable function embeddings (compiled by GCC) of our
interest has been prepared; 2○ the query binary is stripped, and
compiled with Clang; 3○ one attempts to find a vulnerable function
in a query binary. Note that previous approaches [9, 10, 21, 23, 26–
28, 60, 65, 73, 74, 92, 93, 95, 100] solely query a function to determine
if it contains a vulnerability. However, querying a vulnerable func-
tion could suffer from accuracy in case of a number of false positive
responses (e.g., say all functions are vulnerable). Instead, we allow
one to find all vulnerable functions by querying an entire binary it-
self for a precise result. Moreover, a single CVE may entail multiple
functions in practice.
Evaluation Metric. In the above scenario, similar function pairs
are much rarer than dissimilar ones. Unavoidably, this imbalance
may distort a few metrics even for a highly accurate model, such
as a recall and F1 score. Suppose that we have 𝑆 positive samples
and 𝐷 negative samples, and a model reaches up to 𝑇𝑃 = 0.99 × 𝑆

and 𝐹𝑃 = 0.01 × 𝐷 where 𝑆 = 𝑇𝑃 + 𝐹𝑁 and 𝐷 = 𝑇𝑁 + 𝐹𝑃 . Also,
assume that 𝑆 ≃ 0.003 ×𝐷 . Then, the precision, recall, and F1 score
are approximately 0.23, 0.99, and 0.37, respectively. As shown, a
large volume of negative samples can distort a precision and F1
score even for an accurate model, so we merely include accuracy
and recall for the evaluation with a query binary.
Results. We assess four baselines, BinShot and BinShot-CTR
with 12 query binaries from three programs compiled with Clang
O0-O3. Table 3 summarizes the results of detecting a vulnerable
function along with functions in our database. Note that we rule out
a few vulnerable functions (e.g., crypto_recv, ctl_putdata-O3,
configure-O1) because a reversing tool (i.e., IDA [35]) failed to
recognize their boundaries in a stripped binary. Interestingly, with
the thresholds in §6.2, all models but DeepSemantic [51] discover
the whole vulnerable functions in the query binaries. However,
only BinShot achieves the high accuracy (i.e., 88.2% on average)
while all the others show the quite poor accuracy (i.e., less than
50%), which remains their effectiveness questionable when applying
them to a real scenario in practice. This is mainly because even a

368

Practical Binary Code Similarity Detection with BERT-based Transferable Similarity Learning ACSAC ’22, December 5–9, 2022, Austin, TX, USA

single false positive (of all comparisons in the database) returns
the result as a vulnerable function, which decreases the overall
accuracy. Besides, we investigate the case of NTP in Table 3; the
boundary of a function was different (incorrect) from the ground
truth, resulting in the relatively poor accuracy (79.4%).

6.5 Function Embedding Visualization

One of the popular means to comprehend a classification model on
vast amounts of data is through visualization. Because our model
relies on binary classification, it requires checking if the embed-
dings for a similar function pair are close enough while those of a
dissimilar one is sufficiently distant. However, representing each
vector in a high dimensional space (e.g., 128 dimensions in our ex-
periment) is difficult. We utilize a t-distributed Stochastic Neighbor
Embedding (t-SNE) method [85] that offers non-linear dimension-
ality reduction where similar data are pointed close together in a
lower-dimensional space. As in Figure 7, we select five different
functions that have been wrongly classified (i.e., false negative) by
baseline models in §6.2, which BinShot has correctly classified (i.e.,
true positive). Note that Figure 7 shows eight different embeddings
per assembly function (with a unique symbol) because each func-
tion has been compiled with a combination of two compilers and
four optimization levels. Hence, the vectors representing similar
functions are expected to be located nearby. Figure 7 intuitively
visualizes the vectors representing similar functions generated by
BinShot, which are indeed well clustered together. Interestingly,
visualized functions other than hmac_key (green X mark) have two
disparate groups: one comes from gcc, and the other from clang.

6.6 Runtime Efficiency

In this section, we conduct two experiments to assess runtime effi-
ciencies of BinShot and other baseline models for inferring binary
similarity (i.e., binary classification of a given function pair). First,
we sampled 16, 595 function pairs (0.28%; 99% confidence level)
from all 5, 884, 690 pairs that include training, validation, and test
sets (§6.1). As a result, Gemini [92], Asm2Vec [23], PalmTree [57],
DeepSemantic [51], BinShot-CTR, and BinShot took 0.10, 81.94,
1.33, 1.34, 1.30, and 1.32 ms (millisecond) per each function pair,
respectively. Other than Gemini (the fastest run) and Asm2Vec (the
slowest run), all the others are similar. Next, we assume the sce-
nario (§4.5) where one attempts to seek if any function in a target
binary has a similar one in a database that contains 100 function
embeddings of our interest. We pre-build the database that stores
a series of (NF, NF embedding) as a (key, value) pair for a quick
look-up. Then, we collect 823 functions (after refinement as §6.1)
from the OpenSSL library as a target. With the above settings, we
measure the running time for both function embedding generation
(i.e., 823) and similarity inferences (i.e., 82, 300 = 100 × 823) with
five state-of-the-art approaches, including BinShot. It is noted
that generating embeddings dominates runtime overheads over
comparisons by look-ups. As a result, Gemini [92], Asm2Vec [23],
PalmTree [57], DeepSemantic [51], BinShot-CTR, and BinShot
took 1.16, 6, 743.66, 29.03, 1.51, 1.45, and 1.54 seconds, respectively.
While Gemini [92] ranks first, BinShot shows a comparable effi-
ciency.

7 RELATEDWORK

The related work in the domain of BCSD is vast [33]. We clas-
sify prior work into three categories: static [1, 3, 19–21, 25, 27, 30,
46, 55, 63, 74, 93, 101], dynamic [9, 26, 45, 47, 66, 67, 73, 89], and
ML-based [10, 23, 24, 28, 51, 57, 60, 64, 65, 73, 84, 92, 95, 96, 100]
approaches.
Static Approaches. In the era of non-ML techniques, the main
static approaches in the field of BCSD utilize graph isomorphism
detection [3, 25, 101], symbolic execution [30, 63], data flow anal-
ysis [19, 20, 74], or other techniques [1, 21, 27, 46, 55, 93]. Bin-
Diff [25, 101] uses graph isomorphism on both call graph and con-
trol flow graph (CFG), and later BinSlayer [3] improves BinDiff by
augmenting the Hungarian algorithm for bi-partite graph matching.
BinHunt [30] and CoP [63] employ static symbolic execution to
understand the semantics of binaries. In particular, BinHunt utilizes
theorem proving for extracting semantics of binaries, whereas CoP
searches the longest common sub-sequence to compute the simi-
larity. Lee et al. [55] determines the similarity of a pair target with
both the structural information of a call graph and the N-gram of
instruction mnemonics. Tracelet [21] divides the CFG of a function
into a fixed length of partial traces of an execution to measure simi-
larity with those traces. Pewny et al. [74] propose a tool that collects
input/output (I/O) pairs by providing random inputs to a code snip-
pet. With these I/O pairs, it obtains a hash value that represents
a basic block, followed by performing graph matching with the
represented values. OpSeq [1] generates the signature of Android
malware by analyzing the sequence of normalized opcodes in a sen-
sitive functional module. discovRE [27] introduces a fast similarity
comparison method by filtering numeric and structural features
from pre-generated features before function matching. ESH [19]
and GitZ [20] decompose a target code into smaller fragments via
data flow analysis, applying statistical reasoning for further BCSD.
BinXary [93] analyzes the signature of a patch by comparing a vul-
nerable program with a patched program. Meanwhile, BinKit [46]
releases the first large-scale public benchmark that allows one to
reproduce a BCSD task along with its tool, KitNib [46] for ground
truth building.
Dynamic Approaches. Dynamic approaches for BCSD aim to
analyze the semantics of binaries by running executables [9, 26,
45, 47, 66, 67, 73, 89]. Varying techniques have been introduced,
such as comparing I/O pairs [9, 26, 45, 89], dynamic symbolic ex-
ecution [66, 67], and learning semantics of execution paths with
a neural network [73]. BLEX [26] executes two target functions
with randomly sampled input values to compare their behaviors
provoked by the inputs. BinSim [67] utilizes system calls or API
calls to slice out corresponding code segments and then check their
equivalence with symbolic execution. Kim et al. [47] propose a
similarity computation based on function matching with both static
analysis (e.g., CFG, N-gram) and dynamic analysis (e.g., instruction
traces). TREX [73] employs a neural network model, training with
diverse execution traces and assembly codes. However, dynamic
approaches require a time-consuming and cumbersome task to
execute binaries multiple times, limiting them to be scalable.
ML-based Static Approaches. Over the last decade, as the ML
field has been remarkably advanced, applying ML-based techniques

369

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Ahn, et al.

(a) Gemini (b) Asm2Vec (c) PalmTree (d) DeepSemantic (e) BinShot-CTR (f) BinShot

ENGINE_set_default_DH
(libcrypto)

BinarySource_get_rsa_ssh1_pub
(puttygen)

unicodeOpen
(sqlite3)

ngx_open_tempfile
(nginx)

md5_new
(puttygen)

Figure 7: t-SNE visualization [85] of six different models in a two-dimensional space. Each symbol (e.g., +, x, o) denotes five function embeddings

where each function has eight similar versions (i.e., functions with two compilers and four optimization levels). BinShot has the clearest

boundary so that similar functions can group together.

to BCSD [10, 23, 24, 28, 60, 64, 65, 84, 92, 95, 100] has become com-
mon. To learn the features of a function from a CFG, Genius [28]
employs a genetic algorithm and spectral clustering. On the other
hand, Gemini [92] and VulSeeker [10] employ a graph embedding
network-based Siamese architecture. Meanwhile, Asteria [95] uti-
lizes a target function’s abstract syntax tree (AST) from decompi-
lation, followed by training a Tree-LSTM-based model based on a
Siamese architecture. With the model and a set of callees from the
target, Asteria obtains a similarity score. 𝛼Diff [60] takes another
approach that uses raw bytes of functions to train a convolution
neural network-based Siamese architecture. Recently, advances in
NLP techniques have triggered applications [23, 24, 65, 100] in the
computer-language domain that leverage various techniques into
training assembly language. Asm2Vec [23] and DeepBinDiff [24]
conduct unsupervised learning by training the context of instruc-
tions. InnerEye [100] and SAFE [65] employ an NLP-based Siamese
network. The closest work to BinShot would be Luo et al. [64] and
BinDiffNN [84], which takes an approach of learning a weighted dis-
tance vector. However, Luo et al. [64] manually extract features for
function embeddings, whereas BinDiffNN [84] employs an attention-
based neural network. Moreover, unlike ours, they do not thor-
oughly discuss the difference between their Siamese architectures
with previous works.
BERT Applications. With the emergence of BERT [22], there is a
prominent research trend in the field of NLPwith transformer-based
language models [54, 61, 78]. The popularity of BERT penetrates
the domain of binary code analysis by building a representative as-
sembly language model [51, 57, 73, 88, 96]. Yu et al. [96], TREX [73],
and jTrans [88] fully focus on BCSD, whereas others [51, 57] utilize
a BERT-based model for various downstream tasks. Yu et al. [96]
obtain a pre-trained BERT model with the information extracted
from a CFG, generating semantic-aware token embeddings and
block embeddings, followed by predicting if two binaries are similar.
TREX [73] employsMLM to learn dynamic values with micro-traces
(a form of under-constrained dynamic traces) of a function and then
fine-tune the downstream model for a binary function similarity
task. jTrans [88] proposes modified BERT to represent jump instruc-
tions to be aware of their jump target. The authors use a triplet
loss [80], another popular loss function in Siamese neural network,
to train their downstream model. Meanwhile, DeepSemantic [51]
and PalmTree [57] apply a generic model for assembly language
to other tasks. DeepSemantic [51] demonstrates two downstream

tasks: BCSD and classification for a compiler or optimization level.
Likewise, PalmTree [57] applies a generic model to five downstream
tasks: outlier detection, basic block search, BCSD, function type
signature inference, and value set analysis. We adopt a BERT-based
model for BinShot; however, we focus more on how to train a
Siamese neural network for better BCSD.

8 CONCLUSION

In this paper, we propose BinShot that learns a weighted distance
vector with a BERT-based Siamese architecture for binary code sim-
ilarity detection. We adopt BERT to be able to learn the semantics
of an assembly language and harness a binary cross entropy as a
loss function. We implemented the prototype of BinShot, which
shows that BinShot is more robust than existing state-of-the-art
models for BCSD. Our experimental results show that the perfor-
mance of BinShot surpasses that of the cutting-edge approaches,
demonstrating its effectiveness and practicality.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd, Aisha Ali-
Gombe, for their constructive feedback. This work was supported
by the National Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIT) (NRF-2020R1A2B5B03095204) and
the Basic Science Research Program through NRF grant funded by
the Ministry of Education of the Government of South Korea (No.
2022R1F1A107437311). Also, it was supported, in part, by Institute of
Information & Communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government (MSIT) (No.2020-0-
01840; Analysis on technique of accessing and acquiring user data
in smartphone, No. 2022-0-01199; Graduate School of Convergence
Security (SungKyunKwan university), No.2022-0-00688; AI Plat-
form to Fully Adapt and Reflect Privacy-Policy Changes), the MSIT
(Ministry of Science and ICT), Korea, under the ITRC (Information
Technology Research Center) support program (IITP-2022-2020-
0-01602) supervised by the IITP, Inter-University Semiconductor
Research Center (ISRC), and the BK21 FOUR program of the Educa-
tion and Research Program for Future ICT Pioneers, Seoul National
University in 2022. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the sponsor.

370

Practical Binary Code Similarity Detection with BERT-based Transferable Similarity Learning ACSAC ’22, December 5–9, 2022, Austin, TX, USA

REFERENCES

[1] Aisha Ali-Gombe, Irfan Ahmed, and Golden G. Richard III. 2015. OpSeq: Android
Malware Fingerprinting. In Proceedings of the 5th Program Protection and Reverse
Engineering Workshop (PPREW). Los Angeles, CA.

[2] Angr. 2016. Python Framework for Analyzing Binaries. https://angr.io/.
[3] Martial Bourquin, Andy King, and Edward Robbins. 2013. BinSlayer: Accurate

Comparison of Binary Executables. In Proceedings of the 2nd ACM SIGPLAN
Program Protection and Reverse Engineering Workshop (PPREW). Rome.

[4] Jane Bromley, Isabelle M Guyon, Yann LeCun, Eduard Säckinger, and Roopak
Shah. 1993. Signature Verification using a Siamese Time Delay Neural Network.
In Proceedings of the 6th Conference on Neural Information Processing Systems
(NIPS). Denver, CO.

[5] Tom Brosch and Maik Morgenstern. 2006. Runtime Packers: The Hidden Prob-
lem. In Black Hat USA Briefings (Black Hat USA). Las Vegas, NV.

[6] Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga. 2006. Detecting Self-
mutatingMalware Using Control-FlowGraphMatching. In Proceedings of the 3rd
Conference on Detection of Intrusions and Malware and Vulnerability Assessment
(DIMVA). Berlin.

[7] BusyBox. 2022. The Swiss Army Knife of Embedded Linux. https://busybox.net.
[8] Silvio Cesare, Yang Xiang, andWanlei Zhou. 2013. Control Flow-Based Malware

Variant Detection. IEEE Transactions on Dependable and Secure Computing
(TDSC) 11, 4 (2013), 307–317.

[9] Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu, Yang Liu, Chia Yuan Cho,
and Tan Hee Beng Kuan. 2016. BinGo: Cross-Architecture Cross-OS Binary
Search. In Proceedings of the 24th ACM SIGSOFT Symposium on the Foundations
of Software Engineering (FSE). Seattle, WA.

[10] Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu, Yang Liu, Chia Yuan Cho,
and Tan Hee Beng Kuan. 2018. VulSeeker: A Semantic Learning Based Vulnera-
bility Seeker for Cross-Platform Binary. In Proceedings of the 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE). Montpellier.

[11] Sumit Chopra, Raia Hadsell, and Yann LeCun. 2005. Learning a Similarity Metric
Discriminatively, with Application to Face Verification. In Proceedings of the 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR). Washington, DC.

[12] The MITRE Corporation. 2012. CVE-2012-2776 Detail. https://www.cve.org/
CVERecord?id=CVE-2012-2776/.

[13] The MITRE Corporation. 2014. CVE-2014-0160 Detail. https://www.cve.org/
CVERecord?id=CVE-2014-0160/.

[14] The MITRE Corporation. 2014. CVE-2014-0221 Detail. https://www.cve.org/
CVERecord?id=CVE-2014-0221/.

[15] The MITRE Corporation. 2014. CVE-2014-3508 Detail. https://www.cve.org/
CVERecord?id=CVE-2014-3508/.

[16] The MITRE Corporation. 2014. CVE-2014-9295 Detail. https://www.cve.org/
CVERecord?id=CVE-2014-9295/.

[17] The MITRE Corporation. 2015. CVE-2015-1791 Detail. https://www.cve.org/
CVERecord?id=CVE-2015-1791/.

[18] Curl. 2022. libcurl - the multiprotocol file transfer library. https://curl.se/libcurl.
[19] Yaniv David, Nimrod Partush, and Eran Yahav. 2016. Statistical Similarity of

Binaries. In Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). Santa Barbara, CA.

[20] Yaniv David, Nimrod Partush, and Eran Yahav. 2017. Similarity of Binaries
through re-Optimization. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI). Barcelona.

[21] Yaniv David and Eran Yahav. 2014. Tracelet-Based Code Search in Executables.
Acm Sigplan Notices 49, 6 (2014), 349–360.

[22] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the Association for Computational Linguistics
(NAACL). Minneapolis, Minnesota.

[23] StevenH. H. Dinga, Benjamin C.M. Fung, and Philippe Charland. 2019. Asm2Vec:
Boosting Static Representation Robustness for Binary Clone Search against
Code Obfuscation and Compiler Optimization. In Proceedings of the 40th IEEE
Symposium on Security and Privacy (Oakland). San Francisco, CA.

[24] Yue Duan, Xuezixiang Li, Jinghan Wang, and Heng Yin. 2020. DEEPBINDIFF:
Learning Program-Wide Code Representations for Binary Diffing. In Proceedings
of the 27th Annual Network and Distributed System Security Symposium (NDSS).
San Diego, CA.

[25] Thomas Dullien and Rolf Rolles. 2005. Graph-based comparison of Executable
Objects (English Version). In Symposium sur la sécurité des technologies de
l’information et des communications (SSTIC). Rennes.

[26] Manuel Egele, MaverickWoo, Peter Chapman, and David Brumley. 2014. Blanket
Execution: Dynamic Similarity Testing for Program Binaries and Components.
In Proceedings of the 23rd USENIX Security Symposium. San Diego, CA.

[27] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla. 2016. dis-
covRE: Efficient Cross-Architecture Identification of Bugs in Binary Code. In
Proceedings of the 23rd Annual Network and Distributed System Security Sympo-
sium (NDSS). San Diego, CA.

[28] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng
Yin. 2016. Scalable Graph-based Bug Search for Firmware Images. In Proceedings
of the 23rd ACM Conference on Computer and Communications Security (CCS).
Vienna.

[29] Halvar Flake. 2004. Structural Comparison of Executable Objects. In Proceedings
of the 1st Conference on Detection of Intrusions and Malware and Vulnerability
Assessment (DIMVA). Dortmund.

[30] Debin Gao, Michael K Reiter, and Dawn Song. 2008. BinHunt: Automatically
Finding Semantic Differences in Binary Programs. In Proceedings of the 10th
International Conference on Information and Communications Security (ICICS).
Birmingham.

[31] GNU. 2022. Libbgmp: The GNU Multiple Precision Arithmetic Library. https:
//gmplib.org.

[32] Google. 2020. Release of BERTModels. https://github.com/google-research/bert.
[33] Irfan Ul Haq and Juan Caballero. 2021. A Survey of Binary Code Similarity.

ACM Computing Surveys (CSUR) 54, 3 (2021), 1–38.
[34] Hex-rays. 2019. IDAPython Documentation. https://www.hex-rays.com/

products/ida/support/idapython_docs/.
[35] Hex-Rays. 2022. IDA Pro Disassembler. https://www.hex-rays.com/products/

ida/.
[36] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and

Ruslan R Salakhutdinov. 2012. Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012).

[37] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation 9, 8 (1997), 1735–1780.

[38] Xin Hu, Sandeep Bhatkar, Kent Griffin, and Kang G. Shin. 2013. MutantX-S:
Scalable Malware Clustering Based on Static Features. In Proceedings of the 22th
USENIX Security Symposium. Washington, DC.

[39] Yikun Hu, Yuanyuan Zhang, Juanru Li, and Dawu Gu. 2016. Cross-architecture
Binary Semantics Understanding via Similar Code Comparison. In Proceedings
of the 2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER). Suita, Osaka.

[40] Yikun Hu, Yuanyuan Zhang, Juanru Li, and Dawu Gu. 2017. Binary Code Clone
Detection across Architectures and Compiling Configurations. In Proceedings
of the 25th International Conference on Program Comprehension (ICPC). Buenos
Aires.

[41] huanghonggit. 2019. BERT MLM with Pytorch. https://github.com/
huanghonggit/Mask-Language-Model.

[42] ImageMagick. 2022. ImageMagick. https://imagemagick.org.
[43] Jiyong Jang, Abeer Agrawal, and David Brumley. 2012. ReDeBug: Finding

Unpatched Code Clones in Entire OS Distributions. In Proceedings of the 33rd
IEEE Symposium on Security and Privacy (Oakland). San Francisco, CA.

[44] Chani Jindal, Christopher Salls, Hojjat Aghakhani, Keith Long, Christopher
Kruegel, and Giovanni Vigna. 2019. Neurlux: Dynamic Malware Analysis With-
out Feature Engineering. In Proceedings of the 35th Annual Computer Security
Applications Conference (ACSAC). San Juan.

[45] Ulf Kargén and Nahid Shahmehri. 2017. Towards Robust Instruction-Level Trace
Alignment of Binary Code. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE). Urbana-Champaign, IL.

[46] Dongkwan Kim, Eunsoo Kim, Sang Kil Cha, Sooel Son, and Yongdae Kim. 2022.
Revisiting Binary Code Similarity Analysis using Interpretable Feature Engi-
neering and Lessons Learned. IEEE Transactions on Software Engineering (2022),
1–23.

[47] TaeGuen Kim, Yeo Reum Lee, BooJoong Kang, and Eul Gyu Im. 2019. Binary
Executable File Similarity Calculation using Function Matching. The Journal of
Supercomputing 75, 2 (2019), 607–622.

[48] Diederik P Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In Proceedings of the 3rd International Conference on Learning Repre-
sentations (ICLR). San Diego, CA.

[49] Gregory Koch. 2015. Siamese Neural Networks for One-Shot Image Recognition.
Ph. D. Dissertation. University of Toronto, Toronto. http://www.cs.toronto.edu/
~gkoch/files/msc-thesis.pdf.

[50] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. 2015. Siamese Neural
Networks for One-shot Image Recognition. In Proceedings of the 32nd Interna-
tional Conference on Machine Learning (ICML). Lille.

[51] Hyungjoon Koo, Soyeon Park, Daejin Choi, and Taesoo Kim. 2021. Semantic-
aware Binary Code Representation with BERT. arXiv preprint arXiv:2106.05478
(2021).

[52] Hyungjoon Koo, Soyeon Park, and Taesoo Kim. 2021. A Look Back on a Function
Identification Problem. In Proceedings of the 37th Annual Computer Security
Applications Conference (ACSAC). Virtual Event.

[53] Christopher Kruegel, Engin Kirda, Darren Mutz, William Robertson, and Gio-
vanni Vigna. 2005. Polymorphic Worm Detection Using Structural Information
of Executables. In Proceedings of the 8th International Symposium on Research in
Attacks, Intrusions and Defenses (RAID). Seattle, Washington.

[54] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. 2019. ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations. In Proceedings of the 7th International

371

https://angr.io/
https://busybox.net
https://www.cve.org/CVERecord?id=CVE-2012-2776/
https://www.cve.org/CVERecord?id=CVE-2012-2776/
https://www.cve.org/CVERecord?id=CVE-2014-0160/
https://www.cve.org/CVERecord?id=CVE-2014-0160/
https://www.cve.org/CVERecord?id=CVE-2014-0221/
https://www.cve.org/CVERecord?id=CVE-2014-0221/
https://www.cve.org/CVERecord?id=CVE-2014-3508/
https://www.cve.org/CVERecord?id=CVE-2014-3508/
https://www.cve.org/CVERecord?id=CVE-2014-9295/
https://www.cve.org/CVERecord?id=CVE-2014-9295/
https://www.cve.org/CVERecord?id=CVE-2015-1791/
https://www.cve.org/CVERecord?id=CVE-2015-1791/
https://curl.se/libcurl
https://gmplib.org
https://gmplib.org
https://github.com/google-research/bert
https://www.hex-rays.com/products/ida/support/idapython_docs/
https://www.hex-rays.com/products/ida/support/idapython_docs/
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
https://github.com/huanghonggit/Mask-Language-Model
https://github.com/huanghonggit/Mask-Language-Model
https://imagemagick.org
http://www.cs.toronto.edu/~gkoch/files/msc-thesis.pdf
http://www.cs.toronto.edu/~gkoch/files/msc-thesis.pdf

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Ahn, et al.

Conference on Learning Representations (ICLR). New Orleans, LA.
[55] Yeo Reum Lee, BooJoong Kang, and Eul Gyu Im. 2013. Function Matching-based

Binary-Level Software Similarity Calculation. In Proceedings of the 2013 Research
in Adaptive and Convergent Systems (RACS). Montreal.

[56] Xuezixiang Li, Qu Yu, and Heng Yin. 2021. Offical Implementation for PalmTree.
https://github.com/palmtreemodel/PalmTree.

[57] Xuezixiang Li, Qu Yu, and Heng Yin. 2021. PalmTree: Learning an Assembly
Language Model for Instruction Embedding. In Proceedings of the 28th ACM
Conference on Computer and Communications Security (CCS). Virtual Event.

[58] LibTom. 2022. LibTomCrypt. https://www.libtom.net/LibTomCrypt.
[59] Marina Lindorfer, Alessandro Di Federico, Federico Maggi, Paolo Milani Com-

paretti, and Stefano Zanero. 2012. Lines of Malicious Code: Insights Into the
Malicious Software Industry. In Proceedings of the 28th Annual Computer Security
Applications Conference (ACSAC). Orlando, Florida.

[60] Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li, Feng Li, Aihua Piao, andWei
Zou. 2018. 𝛼Diff: Cross-version Binary Code Similarity Detection with DNN.
In Proceedings of the 33rd IEEE/ACM International Conference on Automated
Software Engineering (ASE). Montpellier.

[61] Yinhan Liu,Myle Ott, NamanGoyal, Jingfei Du,Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. arXiv preprint arXiv:1907.11692
(2019).

[62] Ilya Loshchilov and Frank Hutter. 2017. DecoupledWeight Decay Regularization.
arXiv preprint arXiv:1711.05101 (2017).

[63] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. 2014.
Semantics-Based Obfuscation-Resilient Binary Code Similarity Comparison
with Applications to Software Plagiarism Detection. In Proceedings of the 22nd
ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE).
Hong Kong.

[64] Zhengping Luo, Tao Hou, Xiangrong Zhou, Hui Zeng, and Zhuo Lu. 2021. Binary
Code Similarity Detection through LSTM and Siamese Neural Network. EAI
Endorsed Transactions on Security and Safety 8, 29 (2021), 1–10.

[65] Luca Massarelli, Giuseppe Antonio Di Luna, Fabio Petroni, Leonardo Querzoni,
and Roberto Baldoni. 2019. SAFE: Self-Attentive Function Embeddings for
Binary Similarity. In Proceedings of the 16th Conference on Detection of Intrusions
and Malware and Vulnerability Assessment (DIMVA). Gothenburg.

[66] Jiang Ming, Meng Pan, and Debin Gao. 2012. iBinHunt: Binary Hunting with
Inter-procedural Control Flow. In Proceedings of the 15th International Conference
on Information Security and Cryptology (ISISC). Seoul.

[67] Jiang Ming, Dongpeng Xu, Yufei Jiang, and Dinghao Wu. 2017. BinSim: Trace-
based Semantic Binary Diffing via System Call Sliced Segment Equivalence
Checking. In Proceedings of the 26th USENIX Security Symposium. Vancouver,
Canada.

[68] Abhilash Nandy, Sushovan Haldar, Subhashis Banerjee, and Sushmita Mitra.
2020. A Survey on Applications of Siamese Neural Networks in Computer Vision.
In Proceedings of the 2020 International Conference for Emerging Technology
(INCET). GOA.

[69] Nginx. 2020. High Performance Load-balancer and Web Server. https://nginx.
com.

[70] National Security Agency (NSA). 2019. Software Reverse Engineering (SRE)
Suite of Tools. https://ghidra-sre.org/.

[71] OpenSSL. 2022. Cryptography and SSL/TLS Toolkit. https://www.openssl.org.
[72] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difficulty

of training recurrent neural networks. In Proceedings of the 30th International
Conference on International Conference on Machine Learning (ICML). Atlanta,
GA.

[73] Kexin Pei, Zhou Xuan, Junfeng Yang, Suman Jana, and Baishakhi Ray. 2020.
TREX: Learning Execution Semantics from Micro-Traces for Binary Similarity.
arXiv preprint arXiv:2012.08680 (2020).

[74] Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow, and Thorsten
Holz. 2015. Cross-Architecture Bug Search in Binary Executables. In Proceedings
of the 36th IEEE Symposium on Security and Privacy (Oakland). San Jose, CA.

[75] PuTTygen. 2022. Download PuTTYgen - Putty key generator. https://www.
puttygen.com.

[76] PyTorch. 2019. Open SourceMachine Learning Framework. https://pytorch.org/.
[77] Radare2. 2019. Libre and Portable Reverse Engineering Framework. https:

//rada.re/n/.
[78] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018.

Improving Language Understanding by Generative Pre-Training. (2018). https:
//www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf.

[79] Kimberly Redmond, Lannan Luo, and Qiang Zeng. 2019. A Cross-Architecture
Instruction Embedding Model for Natural Language Processing-Inspired Binary
Code Analysis. In Proceedings of the 2nd Workshop on Binary Analysis Research
(BAR). San Diego, CA.

[80] Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. FaceNet: A Uni-
fied Embedding for Face Recognition and Clustering. In Proceedings of the 2015
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR). Boston, MA.

[81] Paria Shirani, Leo Collard, Basile L. Agba, Bernard Lebel, Mourad Debbabi,
Lingyu Wang, and Aiman Hanna. 2018. BinArm: Scalable and Efficient Detec-
tion of Vulnerabilities in Firmware Images of Intelligent Electronic Device. In
Proceedings of the 15th Conference on Detection of Intrusions and Malware and
Vulnerability Assessment (DIMVA). Paris.

[82] SQLite. 2022. SQLite. https://www.sqlite.org.
[83] Alan Mathison Turing et al. 1936. ON COMPUTABLE NUMBERS, WITH AN

APPLICATION TO THE ENTSCHEIDUNGSPROBLEM. Journal of Math 58, 5
(1936), 345–363.

[84] Sami Ullah and Heekuck Oh. 2022. BinDiffNN: Learning Distributed Repre-
sentation of Assembly for Robust Binary Diffing Against Semantic Differences.
IEEE Transactions on Software Engineering 48, 9 (2022), 3442–3466.

[85] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using
t-SNE. Journal of machine learning research 9, 11 (2008), 2579–2605.

[86] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All You
Need. In Proceedings of the 30th Conference on Neural Information Processing
Systems (NIPS). Long Beach, CA.

[87] vsftpd. 2022. Probably the Most Secure and Fastest FTP server. https://security.
appspot.com/vsftpd.html.

[88] Hao Wang, Wenjie Qu, Gilad Katz, Wenyu Zhu, Zeyu Gao, Han Qiu, Jianwei
Zhuge, and Chao Zhang. 2022. jTrans: Jump-Aware Transformer for Binary
Code Similarity Detection. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA). Virtual Event.

[89] Shuai Wang and Dinghao Wu. 2017. In-Memory Fuzzing for Binary Code
Similarity Analysis. In Proceedings of the 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE). Urbana-Champaign, IL.

[90] Harald Welte. 2012. Current developments in GPL compliance. (2012). http:
//taipei.freedomhec.org/dlfile/gpl_compliance.pdf

[91] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, ClaraMa, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. 2019. HuggingFaceś Transformers: State-of-the-art
Natural Language Processing. arXiv preprint arXiv:1910.03771 (2019).

[92] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017.
Neural Network-based Graph Embedding for Cross-Platform Binary Code Simi-
larity Detection. In Proceedings of the 24th ACM Conference on Computer and
Communications Security (CCS). Dallas, TX.

[93] Yifei Xu, Zhengzi Xu, Bihuan Chen, Fu Song, Yang Liu, and Ting Liu. 2020.
Patch Based Vulnerability Matching for Binary Programs. In Proceedings of the
29th ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA). Virtual Event.

[94] Zhengzi Xu, Bihuan Chen, Mahinthan Chandramohan, Yang Liu, and Fu Song.
2017. SPAIN: Security Patch Analysis for Binaries towards Understanding the
Pain and Pills. In Proceedings of the 39th International Conference on Software
Engineering (ICSE). Buenos Aires.

[95] Shouguo Yang, Long Cheng, Yicheng Zeng, Zhe Lang, Hongsong Zhu, and
Zhiqiang Shi. 2021. Asteria: Deep Learning-based AST-Encoding for Cross-
platform Binary Code Similarity Detection. In Proceedings of the 51st Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
Taipei.

[96] Zeping Yu, Rui Cao, Qiyi Tang, Sen Nie, Junzhou Huang, and Shi Wu. 2020.
Order Matters: Semantic-Aware Neural Networks for Binary Code Similarity
Detection. In Proceedings of the 34th AAAI Conference on Artificial Intelligence
(AAAI). New York, NY.

[97] Xiaochuan Zhang, Wenjie Sun, Jianmin Pang, Fudong Liu, and Zhen Ma. 2020.
Similarity Metric Method for Binary Basic Blocks of Cross-Instruction Set Ar-
chitecture. In Proceedings of the 3rd Workshop on Binary Analysis Research (BAR).
San Diego, CA.

[98] Zhaoqi Zhang, Panpan Qi, and Wei Wang. 2020. Dynamic Malware Analysis
with Feature Engineering and Feature Learning. In Proceedings of the 34th AAAI
Conference on Artificial Intelligence (AAAI). New York, NY.

[99] Zlib. 2022. A Massively Spiffy Yet Delicately Unobtrusive Compression Library.
https://zlib.net.

[100] Fei Zuo, Xiaopeng Li, Patrick Young, Lannan Luo, and Zhexin Zeng,
Qiang andZhang. 2019. Neural Machine Translation Inspired Binary Code
Similarity Comparison Beyond Function Pairs. In Proceedings of the 26th Annual
Network and Distributed System Security Symposium (NDSS). San Diego, CA.

[101] Zynamics. 2022. zynamics BinDiff. https://www.zynamics.com/bindiff.html.

A NORMALIZED FUNCTIONS

Table 4 shows the primary rules for processing instruction normal-
ization suggested by [51], which apply an operand that represents
an immediate, a register, or a pointer. After the normalization, two

372

https://github.com/palmtreemodel/PalmTree
https://www.libtom.net/LibTomCrypt
https://nginx.com
https://nginx.com
https://ghidra-sre.org/
https://www.openssl.org
https://www.puttygen.com
https://www.puttygen.com
https://pytorch.org/
https://rada.re/n/
https://rada.re/n/
https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf
https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf
https://www.sqlite.org
https://security.appspot.com/vsftpd.html
https://security.appspot.com/vsftpd.html
http://taipei.freedomhec.org/dlfile/gpl_compliance.pdf
http://taipei.freedomhec.org/dlfile/gpl_compliance.pdf
https://zlib.net
https://www.zynamics.com/bindiff.html

Practical Binary Code Similarity Detection with BERT-based Transferable Similarity Learning ACSAC ’22, December 5–9, 2022, Austin, TX, USA

different functions may be mapped into the same instruction se-
quence as shown in Figure 8. Note that we exclude such cases for
stable training.

Table 4: Illustrative rules on an operand for the well-balanced in-

struction normalization [51] and examples accordingly. [I], [R], and

[P] represent a category for an immediate, register, and pointer.

Rule Notation Example

[I] libc library call libc[name] call_libcprintf
[I] recursive call self call_self
[I] call within a binary innerfunc call_innerfunc
[I] call out of a binary externfunc call_externfunc
[I] jump to a destination jmpdst jmp_jmpdst
[I] referring a string dispstr mov_reg4_dispstr
[I] referring a static variable dispbss mov_reg8_dispbss
[I] referring non-string data dispdata movabs_reg8_dispdata
[I] other immediates immval sar_reg8_immval

[R] register size reg[1|2|4|8] rax → reg8, ebx→ reg4
[R] stack register rsp rsp → sp8
[R] base register rbp rbp → bp8
[R] instruction register rip rip → ip8

[P] direct pointer [byte|word mov_qwordptr
|dword|qword]ptr [reg8-8]_reg8

[P] indirect pointer [base_index*scale or_dwordptr
+displacement] [reg8+disp]+immval

Normalized
Disassembly

sub_sp8_immval

mov_reg8_reg8

mov_reg4_immval

call_innerfunc

add_sp8_immval

ret

Zlib’s
gzopen

sub rsp, 8

mov rdx, rsi

mov esi, 0FFFFFFFFh

call gz_open

add rsp, 8

retn

Blender’s
restrictbutton_r_lay_cb

sub rsp, 8

mov rdx, rsi

mov esi, 4040000h

call WM_event_add_notifier

add rsp, 8

retn

Figure 8: Example of two identical functions after normalization.

Here the function gzopen from Zlib and restrictbutton_r_lay_cb
from Blender embody the same sequence of tokens. Both are com-

piled with gcc with -O1. We exclude this case from our dissimilar

function pair set.

B MODEL THRESHOLDS

A different model adopts its own distance function such as a co-
sine distance or L2 norm (Table 2). Moreover, a model takes its
own similarity threshold of a computed distance (or probability)
to determine the similarity of a given pair. For fair comparisons,
we choose a similarity threshold that maximizes an F1 score per
baseline approach. As an example, Gemini [92] utilizes a cosine
distance that ranges from −1 to 1, resulting in a drastic change
in F1 scores. Figure 9 depicts that a threshold of 0.383 maximizes
Gemini’s performance. A too high threshold lowers a prediction of
positive samples, resulting in the recall (and F1) decrease accord-
ingly. In the same vein, we choose the thresholds of 0.037 and 0.394
for Asm2Vec [23] and PalmTree [57]. BinShot-CTR utilizes the
L2 norm as a distance function, having a threshold of 0.485. It is
worth noting that a threshold could vary empirically depending on
a distance function, loss function, and architecture across different
approaches.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Threshold

0.0

0.2

0.4

0.6

0.8

F1
 sc

or
e

Figure 9: F1 scores by similarity thresholds with the Gemini model

(§6.2). The cosine distance threshold of 0.383 maximizes an F1 score.

Table 5: Results of BCSD for large functions with BinShot.

Accuracy Precision Recall F1 score

0.978 0.995 0.966 0.980

C LARGE FUNCTION EVALUATION

Recall that we exclude large functions (4.66%) when training the
current model for BinShot. We conduct an additional experiment
to demonstrate the capability of BinShot even for such large func-
tions without training them at all. We adopt a naïve approach that
truncates the number of tokens when exceeding the limit that BERT
can take as an input. Table 5 shows accuracy, precision, recall, and
F1 score, which shows little performance degradation.

D CASE STUDY

We analyze several cases that make BCSD challenging, which has
been discussed in Appendix E.

1 static void emDM_drawEdges(DerivedMesh *dm,
2 int UNUSED(drawLooseEdges),
3 int UNUSED(drawAllEdges))
4 {
5 emDM_drawMappedEdges(dm, NULL, NULL);
6 }

Listing 1: Example of a function inlining. emDM_drawMappedEdges is
inlined at the optimization level 3.

(Case 1) False Negative: Function Inlining. The code snippet
in Listing 1 shows the definition of the function, emDM_drawEdges,
in the blender_r binary from the SPEC2017 suite. As it contains
a single function call, a modern compiler often embeds (copies) it
into another function (i.e., function inlining) as part of optimization
to eliminate a call-linkage overhead like a function prologue or
epilogue. For instance, emDM_drawEdges-O0 (i.e., compiled with
the optimization level of -O0) contains a single call with 13 in-
structions, whereas emDM_drawEdges-O3 (i.e., compiled with the
optimization level of -O3) contains seven calls with 56 instruc-
tions because the compiler inserts emDM_drawMappedEdges into
emDM_drawEdges. As a label for ground truth is based on a function
symbol name (from binary debugging information) irrespective of
such an inlining optimization, our dataset may erroneously claim

373

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Ahn, et al.

that emDM_drawEdges-O0 and emDM_drawEdges-O3 are a similar
function pair. Strictly speaking, this case must be regarded as a
true negative case because those functions are contextually not
identical.
(Case 2) False Positive: Mangled Names. In our dataset, the func-
tion named _M_get_Tp_allocator at ld.gold (from binutils)
and the one at parest_r (from SPEC 2017) turn out to be identical
because both originate from the same member function in the stan-
dard template library (STL). In this case, the label marks “dissimilar”
due to different namespaces, leading to a false positive, although the
decision must be correct. In general, polymorphic techniques (for
inheritance), such as function overloading and overriding, make a
decision more complicated because it is challenging to be aware of
one’s intention; e.g., the implementation of an overridden function
may or may not be different.
(Case 3) False Positive: Identical Functions in Different Bi-

naries. Another interesting case arises from a traditional linking
process. It is possible to have literally identical functions (except
adjustable fixups for relocation) across different executable binaries
when there is a statically shared library in common during compila-
tion. The static library (e.g., shared objects with an a file extension
in a *NIX system) holds a number of object files, each of which
contains one or more functions within. If a binary borrows any
function in a certain object file, a linker consolidates all (binary)
functions in that object file by default. Those functions would pre-
serve exactly the same function bodies across other binaries that
import an arbitrary function in that object file because an offset
(e.g., relative address to call or jump) as an operand would be ig-
nored during instruction normalization. A good example would be
the case of GNU utilities; e.g., quotearg_style_mem is present at
both find (from findutils) and stat (from coreutils). With
the current labeling scheme, they are a dissimilar function pair;
however, the truth is that they should be served as similar because
those functions stem from the same source code.

E DISCUSSIONS AND LIMITATIONS

In this section, we discuss future work and limitations of our work.
Mangled Names. Name mangling (i.e., name decoration) is a
technique that allows one to employ unique entity names (e.g.,
function name), which has been widely adopted by modern pro-
gramming languages. Simply put, one can declare multiple entity
identifiers using a different namespace (with a structure, class, or
module) or function overloading. Then, a compiler internally cre-
ates a distinguishing name that utilizes class hierarchy, arguments,
and type information. Since the current labeling process endorses
the original mangled names, it may give rise to incorrect labels
(See Appendix D).
Code Obfuscation and Other Code Constructs. BinShot
mainly focuses on BCSD where obfuscation techniques have not
been applied. Asm2Vec [23] and Luo et al. [63] introduce a tech-
nique for obfuscation-resilient binary code similarity comparison.
InnerEye [100] proposes a similar function detection technique
across different architectures (e.g., Intel and ARM instruction set
architecture). DeepBinDiff [24] seeks similar functions across differ-
ent versions of source code. Although the current form of BinShot

may not be directly applicable to obfuscated binaries or other code
constructs, we plan to expand BinShot in the future.
Function Inlining. Function inlining is one of the well-known
compiler optimization techniques3 which aim to reduce the run-
time overheads that come from entering and exiting a function.
Oftentimes, an inlining process involves either a caller or callee
becoming part of another, leading to drastic changes in resulting
assembly; e.g., an inlined function disappears while an inlining func-
tion includes an additional functionality with the original name.
This might be problematic for labeling with a function name be-
cause semantically similar functions could be classified as dissimilar.
Previous approaches [9, 23, 40] propose a selective callee expan-
sion technique to handle it. We hypothesize that the impact of
function inlining seems limited for a BCSD task considering the
performance of BinShot. Interested readers refer to our case study
in Appendix D.
Rarely Appeared Instructions. A pre-training model may en-
counter rarely appeared instructions, which results in the embed-
ding of those instructions that could stay close to randomly ini-
tialized values. On the one hand, one can increase a pre-training
dataset to relax the issue of hardly-updated instructions; however,
further investigation is needed. On the other hand, it is possible to
leverage the presence of a particular instruction as a birthmark to
BCSD because it could be the unique property of a code snippet.

3A programming language like C++ offers an inline specifier as a keyword on
demand; however, a compiler fully controls an inlining operation.

374

	Abstract
	1 Introduction
	2 Background
	3 Binary Code Similarity Detection
	4 BinShot Design
	4.1 BinShot Overview
	4.2 Preprocessor: Learning Preparation
	4.3 Pre-trainer: Model for Assembly
	4.4 Fine-tuner: Model for Code Similarity
	4.5 Predictor for BCSD

	5 Implementation
	6 Evaluation
	6.1 Dataset
	6.2 Effectiveness
	6.3 Transferability
	6.4 Vulnerable Function Detection
	6.5 Function Embedding Visualization
	6.6 Runtime Efficiency

	7 Related work
	8 Conclusion
	Acknowledgments
	References
	A Normalized Functions
	B Model Thresholds
	C Large Function Evaluation
	D Case Study
	E Discussions and Limitations

