IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 4 January 2024, accepted 11 January 2024, date of publication 17 January 2024,
date of current version 26 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3355098

==l RESEARCH ARTICLE

ToolPhet: Inference of Compiler Provenance
From Stripped Binaries With Emerging
Compilation Toolchains

HOHYEON JANG, NOZIMA MURODOVA ~, AND HYUNGJOON KOO

Department of Computer Science and Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea

Corresponding author: Hyungjoon Koo (kevin.koo @skku.edu)

This work was supported in part by the Basic Science Research Program through National Research Foundation of Korea (NRF) Grant
funded by the Ministry of Education, Government of South Korea, under Grant 2022R1F1A1074373; and in part by the Institute of
Information and Communications Technology Planning and Evaluation (II'TP) Grant funded by the Korean Government [Minister of

Science, Information and Communications Technology (MSIT)], Graduate School of Convergence Security, Sungkyunkwan University,
under Grant 2022-0-01199.

ABSTRACT Identifying compiler toolchain provenance serves as a basis for both benign and malicious
binary analyses. A wealth of prior studies mostly focuses on the inference of a popular compiler toolchain
for C and C++ languages from stripped binaries that are built with GCC or clang. Lately, the popularity of
an emerging compiler is on the rise such as Rust, Go, and Nim programming languages that complement
the downsides of C and C++ (e.g., security), which little has been explored on them. The main challenge
arises when applying previous inference techniques for toolchain provenance because some emerging
compilation toolchains adopt the same backend of traditional compilers. In this paper, we propose ToolPhet,
an effective end-to-end BERT-based system for deducing the provenance of both traditional and emerging
compiler toolchains. To this end, we thoroughly study the characteristics of both an emerging toolchain
and an executable binary that is generated by that toolchain. We introduce two separate downstream
tasks for the compiler toolchain inference with a (BERT-based) fine-tuning process, which produces 1) a
toolchain classification model; and 2) a binary code similarity detection model. Our findings show that
the classification model 1) may not suffice when producing a binary with the existing backend like Nim,
which we adopt the detection model 2) that can infer underlying code semantics. We evaluate ToolPhet
with the previous work including one signature-based tool and four machine-learning-based approaches,
demonstrating its effectiveness by achieving higher F1 scores with the binaries compiled with emerging
compilation toolchains.

INDEX TERMS Compiler inference, binary analysis, BERT, classification model, similarity model.

I. INTRODUCTION varying tasks including function boundary identification [1],

Software is everywhere, ranging from personal laptops,
cloud services, mobile phones, IoT (Internet of Things)
devices to artificial satellites. However, understanding the
internals of software is notoriously challenging because an
executable binary as a distribution form has been stripped
high-level information. Reverse engineering (reversing) of
the binary assists in deducing its underlying semantics with

The associate editor coordinating the review of this manuscript and

approving it for publication was Mostafa M. Fouda

[2], [3], compilation toolchain provenance [4], [5], [6],
binary similarity detection [7], [8], known vulnerability
detection [9], class hierarchy inference [10], and function and
variable symbol name prediction [11], [12].

An executable binary is produced by a compiler toolchain.
However, different settings (e.g., optimization levels, ver-
sions, flags) of the same toolchains as well as different
compiler families can exhibit different binaries although
the semantics of binary code are identical. Recognizing a
compiler toolchain for binary reversing serves as a basis for

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 12, 2024

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 12667

https://orcid.org/0009-0004-6620-5831
https://orcid.org/0000-0003-0799-0230
https://orcid.org/0000-0003-1790-8640

IEEE Access

H. Jang et al.: ToolPhet: Inference of Compiler Provenance From Stripped Binaries

(both benign and malicious) binary analysis from a digital
forensic viewpoint. A good utility would be investigating one
of the malware characteristics. For example, malware variants
that are distributed via the black market (e.g., Malware-as-
a-service) may have the lineage by the original malware
authors. Moreover, identifying a compiler toolchain can be
helpful in understanding the specifics of a binary; e.g.,
a compiler has its own implementation for checking a canary
or control flow integrity.

The most popular compiler toolchains are GCC and clang
that support C and C++ due to their benefits of speed,
portability, flexibility, efficiency, and well-defined standard
libraries. Despite such advantages, concerns about poten-
tial memory corruption vulnerabilities constantly increase
because of poor programming practices such as spatial
violation (i.e., pointer access to an illegitimate boundary),
temporal violation (i.e., pointer access to an invalid object),
and unsafe type conversion (i.e., dynamic_cast).

Lately, new (compilation-based) programming languages
have been introduced to resolve the above downsides. One
of the most popular emerging programming languages is
Rust [13] with the notable feature of an ownership that
controls the scope of every value at compilation. This ensures
memory safety by enforcing that all references point to a
valid memory region without relying on a garbage collector
or areference counter. Linux welcomes Rust, which officially
supports it from the kernel version 6.1 [14]. Likewise,
Go [15] and Nim [16] are gradually on the rise [17],
[18]. Go offers both memory-safe and type-safe features,
whereas Nim provides optional checks with a reference
trace at compilation. Meanwhile, malware authors have
been adopting emerging compiler toolchains for writing a
malicious code [19], [20], [21]; e.g., Agenda [22] with Rust,
EKANS [23] with Go, and IceXloader [24] with Nim. There
has been a 20 times increase of new malware written in Go
over the past few years [20]. With the emerging compiler
toolchains, the binaries compiled with them will become
commonplace.

A wealth of study focus on identifying compiler toolchain
provenance for GCC and clang [4], [5], [25], [26], [27],
[28]. To identify a certain compiler toolchain (i.e., compiler
family and optimization level), a typical and straightforward
approach utilizes a signature that represents the toolchain.
A signature-based toochain identification method has been
widely adopted as part of other tasks like decompilation [29],
file type identification [30], or reversing [31], [32] due to its
simplicity and effectiveness. However, the evident drawback
of the signature-centered approach is to maintain appropriate
signatures in a database according to a version update;
the absence of a signature brings about detection failure.
A plethora of recent advances mitigate such a signature-
based downside by adopting machine learning techniques [4],
[5], [6], [25], [26], [271, [33], [34], [35]. A deep neural
network (DNN) gains attention including O-glassesX [26]
with a convolutional neural network (CNN), NeuralCI [25]

12668

with a recurrent neural network (RNN), and BinProv [6] with
the BERT architecture [36]. Lately, Du et al. [35] propose
an ML-based LightGBM model, aiming to identify compiler
optimization passes [37] However, none of the above can
reveal the identification of emerging compiler toolchains.
Adopting previous approaches is challenging because some
emerging toolchains utilize the same backend of traditional
compilers, which complicates the decision boundary of a
model.

In this paper, we focus on the inference of both traditional
and emerging compilation toolchains that have been rarely
explored, including: Rust [13], Go [15], and Nim [16]
as well as GCC [38], clang [39]. We thoroughly study
both the features of an emerging toolchain itself and those
of a (stripped) binary generated by the toolchain. One
of our findings is that each toolchain inevitably inserts a
considerable amount of subroutines (i.e., binary functions)
within an executable, which can be fingerprintable (as
a birthmark). We leverage common functions for each
toolchain across different versions into further toolchain
identification.

To this end, we present ToolPhet, a BERT-based [36], [40],
[41] end-to-end system for the inference of an emerging
compiler toolchain. ToolPhet consists of four components
that play a role @ to prepare a dataset (e.g., disassembled
instructions), @ to generate a generic model for assembly
(e.g., compiled with GCC, clang, Rust, Go, and Nim),
® to create a specialized model for recognizing a compiler
toolchain, and @ to infer a toolchain with a target code snip-
pet. We build two fine-tuned models for deducing compiler
provenance: a toolchain classification model and a binary
code similarity detection model. The classification model
aims to classify a toolchain by directly learning the internal
features of the toolchain. However, such a model may be
misjudging in case of the same compiler backend (e.g., Nim
adopts the GCC backend). In this case, we leverage a binary
code similarity detection technique [42], [43] that infers the
semantics of (compiler-specific) binary code to achieve our
goal. To this end, we collect a list of birthmark subroutines
per toolchain for further comparison. Namely, with the
pre-defined list of our interest, ToolPhet can determine a
toolchain based on the number of similar/dissimilar functions
within a target binary.

To evaluate ToolPhet, we collect source codes written in
Rust, Go, and Nim from GitHub [44] and Rosetta [45],
followed by compiling them with a different version of each
toolchain. We compare the ToolPhet’s classification model
with the five previous approaches including a signature-based
one (e.g., DIE [46]) and four machine-learning-based
models (e.g., RNN [47], LSTM [48], O-glassesX [26],
and NeuralCI [25]). Our experiments demonstrate that a
toolchain classification model outperforms (or is comparable
to) prior approaches with Fls of 0.979, 0.996, 0.996,
0.968, and 0.956 for Rust, Go, Nim, GCC, and clang,
respectively.

VOLUME 12, 2024

H. Jang et al.: ToolPhet: Inference of Compiler Provenance From Stripped Binaries

IEEE Access

Our main contributions are summarized as follows:

o We propose ToolPhet, an efficient end-to-end BERT-
based system for the provenance inference of both
traditional and emerging compiler toolchains (e.g., Rust,
Go, Nim, GCC, clang).

+ We thoroughly study not only the properties of each
emerging toolchain but also those of executable binaries
built with those compilers, which can help further
toolchain prediction.

o We design and implement ToolPhet with two down-
stream tasks (for achieving the same goal): a toolchain
classification model and a code similarity detection
model (by leveraging the inference of code semantics).

o We evaluate ToolPhet with varying approaches includ-
ing a signature-based tool and four machine-learning-
based models, which achieves comparable or better
performance.

Il. RELATED WORKS

This section summarizes prior work with three approaches
pertaining to provenance inference on a binary: compiler
toolchain, programming language, and compiler optimization
pass. Note that this work focuses on the toolchain inference
for emerging compilers.

A. CONVENTIONAL COMPILER TOOLCHAIN INFERENCE
APPROACHES

Before Rosenblum et al. [S] pioneer the (separate) problem
of identifying a toolchain provenance from a stripped binary,
obtaining compiler information has been part of other tasks
like decompilation [29] and file type identification [30]. One
of the straightforward means is a signature-based approach
because of its simplicity in a cost-effective manner. Today,
a majority of reverse engineering tools such as IDA Pro [31]
and Ghidra [32], can infer toolchain information with known
signatures. However, the downside is that the maintenance
of a signature database requires continuous efforts and time
where a missing signature is undetectable. Thus, we decide to
adopt an ML-based compiler toolchain inference approach.

B. ML-BASED COMPILER TOOLCHAIN INFERENCE
APPROACHES

Early works suggest two machine-learning-based models
with a conditional random field (CRF) [5] and a support
vector machine (SVM) technique [4], which identifies the
characteristics of a binary code pertaining to a specific
compiler toolchain. On the other hand, recent advances have
begun to utilize a deep neural network. O-glassesX [26]
proposes a model based on convolutional layers [49] (for cap-
turing every bit in the whole instruction) and Attention [50]
at the last layer (for identifying each instruction contribution
on a toolchain). The model implementation comes with the
following two options: with and without disassembly. The
former case disassembles a binary code, converting each
instruction into a fixed-length instruction (filled with constant
bits). The latter works directly on an instruction sequence,

VOLUME 12, 2024

attempting to recover the origin of a compiler toolchain.
Meanwhile, NeuralCI [25] introduces a model with an RNN
to reveal compilation information in detail (e.g., compiler
type, optimization level, compiler version of an individual
function). Benoit et al. [27] harness a control flow graph for
building a neural network model for predicting a toolchain
at the binary level. Lately, BinProv [6] is probably closest to
ours in terms of utilizing a BERT-based model for classifying
a compiler (e.g., GCC, clang) with an optimization level.
To the best of our knowledge, we first deal with emerging
compiler toolchains including Rust, Go, and Nim, in the field
of ML-based compiler provenance inference.

C. PROGRAMMING LANGUAGE INFERENCE

Adhikari et al. [51] focuses on detecting a programming
language itself with string metadata from binaries such as
Swift, Rust, C/C++, Go, and Fortran, which differs from our
goal to identify a compiler toolchain.

D. COMPILER OPTIMIZATION PASS INFERENCE

Lately, Yufei et al. [35] utilize the LightGBM [37] to
discern compiler optimization passes applied to binary files.
By leveraging the compiler passes information applied to
each function during compilation, they construct varying
inference models specific to each individual compiler pass
for further identification. With the inferred pass information,
(un)known vulnerabilities and the occurrence of code reuse
gadgets are revealed. Note that this work differs from ours as
focusing on a compiler optimization pass inference.

Ill. BACKGROUND
This section describes the preliminaries to build our end-to-
end system for identifying a compiler toolchain.

A. EXECUTABLE CODE GENERATION

A human-written source code must be converted into a
series of machine instructions that a processor can eventually
fetch and execute. This executable form can be achieved
through different conversion methods: @ a compiler, @ an
interpreter, or ® a virtual machine (VM). The first type is a
compilation process that takes one or more source code and
converts each into an object file, followed by producing a
final executable (i.e., native code) that can be run under a
certain architecture (e.g., C [52], C++ [53], Objective-C [54],
Rust [13], Go [15], Nim [16]). A compiled language (e.g.,
C [52], C++ [53], Objective-C [54], Rust [13], Go [15],
Nim [16]) involves intricate transformation and optimization
facilitated by a compiler toolchain (e.g., compiler, linker,
assembler). The second type is an interpreter-based language
(e.g., Python [55], Ruby [56], R [57], Perl [58], Lua [59]),
which directly parses source code line by line from a
high-level program. Note that an interpreter requires a
source code for its execution at all times as machine
code is not available. While a compiler-generated program
is fast, machine-specific, and inflexible, an interpreter-
based program is slow, machine-agnostic, and flexible.

12669

IEEE Access

H. Jang et al.: ToolPhet: Inference of Compiler Provenance From Stripped Binaries

A VM-based language (e.g., Java [60], C# [61],
JavaScript [62]) attempts to resolve such a trade-off by
producing a bytecode that can be executed under a virtual
machine (e.g., JVM [63] for Java, V8 engine [64] for
JavaScript) as an intermediate interpreter for performance
improvement. This paper focuses on a compilation-based
toolchain because an interpreter-based toolchain with either
a source syntax or VM bytecode is relatively easy.

B. BINARY CODE SIMILARITY DETECTION

A task of detecting binary code similarity is to determine
whether two code snippets are similar when the original
source is unavailable. BinShot [9] is a binary similarity
detection framework that utilizes both the BERT (short
for Bidirectional Encoder Representations from Transform-
ers) [36] architecture and the Siamese network structure.
BERT is initially designed for interpreting and deriving
meaning from human languages (e.g., text, voice) in the field
of NLP, assisting varying common language tasks including
sentiment analysis, question-and-answer tasks, language
translation, etc. BERT takes two training phases; one for
building a generic model, and another for building a specific
model tailored to a downstream task. The design details of
the BERT model is out of this paper’s scope. A Siamese
neural network consists of a twin network that utilizes the
same weights in tandem on two input vectors to produce an
output with a distance function. For example, a set of similar
pairs would be encoded as adjacent embeddings whereas
that of dissimilar pairs as distant embeddings. The idea of
BinShot [9] lies in learning a distance itself with a weighted
distance vector (distance function) and a binary cross entropy
function (loss function) for better binary similarity detection.
Note that we take advantage of BinShot to confirm if a
function of our interest (e.g., particular function that can
represent a compiler toolchain) is within a binary in question.

C. WELL-BALANCED INSTRUCTION NORMALIZATION

Unless feeding a series of byte codes itself into training
a model, one must disassemble them in a human-readable
machine instruction. Previous work [65], [66], [67] illustrate
that these disassembled instructions can be treated as a
vocabulary, resembling a language model. However, a naive
approach such as a one-hot encoding [68] or even word
embedding strategy (e.g., word2vec [69]) suffers from
handling the total number of vocabularies, causing an out-of-
vocabulary (OOV) and a sparse vocabulary problem because
of a tremendous number of possible tokens (i.e., mnemonic,
operand, or both). This hinders the update of each token’s
embedding during a backpropagation algorithm. In this
regard, it is common to normalize an instruction to reduce
the number of tokens (e.g., immediate value — imm, targets
in a callsite — foo). Our work adopts a well-balanced
instruction normalization technique [70], which attempts to
strike a balance between the expressiveness of binary code

12670

that preserves the original code semantics and the problems
from vocabularies like OOV and sparsity.

D. FUZZY HASH

A hash function is a mathematical algorithm that maps a
variable-length value in a large domain to a fixed-length one
within a relatively small domain, while holding the following
two properties: @ one-wayness (i.e., reverse mapping is
not viable), and @ collision resistance (i.e., finding two
arbitrary inputs that map to a certain value is computationally
infeasible). Unlike a cryptographic hashing algorithm that
meets the above properties for integrity, a fuzzy hash [71]
allows one to be aware of similarity by computing piecewise
hashes of each part. For instance, an input file can be split
into multiple parts to produce a hash of the whole file, thereby
being capable of searching for similar messages. A fuzzy hash
is often used in malware classification and clustering. In this
work, we utilize the fuzzy hash to check how the body of a
function (i.e., assembly code) differs from another, in which
the two functions hold the identical function symbol names
(from a debugging table) across different compiler toolchain
versions.

IV. PROBLEM AND APPROACH

This section concisely describes the problem of deducing
compilation toolchain provenance, followed by its goal,
scope, and our approach.

A. PROBLEM DOMAIN

The toolchain provenance problem is to identify a compiler
toolchain from a stripped executable binary. A wealth of
previous approaches [4], [5], [6], [25], [26], [27], [33], [34],
[50] attempt to infer toolchains for stripped binaries, primar-
ily focusing on identifying GCC and clang toolchains, with
an emphasis on languages compiled from sources written
in C and C++ programming languages. However, the problem
for emerging compiler toolchains has been yet explored in the
literature. One may argue that deducing a toolchain would
be feasible from specific section names or other prominent
features. However, such an approach is not reliable because
such information could be simply updated (i.e., renaming
a section name). For example, an executable binary with
Go [15] creates a section named .note.go.buildid.
While being easily identifiable, modifying the section name
is trivial (e.g., objcopy’s —rename-section option).
Hence, we narrow down the problem into the inference of
a compiler toolchain when a sequence of bytes (i.e., machine
instructions) are given.

B. GOAL AND SCOPE

We aim to build an end-to-end system that can infer the
toolchain provenance (i.e., output) from a given binary
compiled with either traditional or emerging compiler
toolchain (i.e., input). In this paper, we concentrate on
three emerging compilation-based programming languages
including Rust [13], Go [15] and Nim [16], as well as GCC

VOLUME 12, 2024

H. Jang et al.: ToolPhet: Inference of Compiler Provenance From Stripped Binaries

IEEE Access

and clang that have been covered by previous approaches
[5], [6], [25], [26], [27], [28]. While the emerging toolchains
offer a slightly deviating options for optimization levels,'
we conduct our experiments on optimized binaries based on
the assumption that most COTS executable binaries have
been built with a release mode by default [72]. Our system
currently supports the Intel’s x64 architecture, but it can be
expanded to support other architectures in the future. It is
worth noting that we exclude obfuscation techniques as they
fall beyond the scope of our current work.

C. CHALLENGES

Due to the nature of the absence of high-level information at a
stripped binary, recognizing the toolchain from a byte stream
or a low-level assembly language is challenging.

D. RULE-BASED APPROACHES

A straightforward approach would be deterministically
inferring a compiler toolchain with a pre-defined rule. For
instance, PEiD [73] can detect a packer, cryptor, or compiler
of a given PE [74] binary based on a database of diverse
signatures (e.g., scanning a preset mask on bytes). Similarly,
Detect It Easy (DIE) [46] extends a signature-based capability
by defining a programmable user-defined rule, which is
another signature-based tool to determine the properties of
a file such as a type (e.g., PE [74], ELF [75], MACH [76]),
packer (if packed), compiler, linker, base address, and its
entry point. However, rule-based approaches necessitate
continuous maintenance of new signatures or algorithms for
compiler toolchain identification. Another downside is a false
negative case, in which a signature that represents a feature is
missing (although a false positive rate would be negligible).

E. OUR APPROACH

We utilize BERT, which is a state-of-the-art architecture in the
field of natural language processing (NLP), to automatically
learn hidden features of the underlying assembly language
and address the problem of compiler toolchain recognition.
Our approach leverages the capabilities of the BERT
model [36], [40], [41], which accumulates substantial code
semantics during its pre-training phase. However, in a binary
code snippet, a uniform instruction may not consistently
convey the same meaning, as its behavior varies based
on the context of the instruction. The pre-training phase
of BERT customized for binary characteristics assists in
understanding relationships between instructions within a
function. Furthermore, it facilitates the creation of models
for various purposes, including classification and similarity
models in our specific context. The strengths of our approach
are twofold: @ it demonstrates enhanced robustness in
identifying new, unseen versions of a toolchain, and @ it

TRust provides similar optimization levels (i.e., 00-O3) to GCC or clang
where 0 for a debugging mode and 3 for a release mode. Go comes with an
optimization by default, providing an option to merely switch it on and off.
Nim provides optimization levels according to a size, speed, debug or release
mode.

VOLUME 12, 2024

exhibits lower false-negative rates compared to rule-based
methods. This is attributed to the model’s ability to unveil
hidden features, such as code semantics. In addition, we build
two fine-tuned models - a toolchain provenance classification
model and a binary similarity detection model - because the
former may not suffice when the emerging toolchain adopts
the existing compiler backend like Nim.

V. EMERGING COMPILER TOOLCHAINS

This section describes a brief history of emerging (compiled)
languages that are on the rise. Note that we survey the main
features of an emerging compiler toolchain (i.e., Rust [13],
Go [15], Nim [16]), which can be the birthmark of a binary
for assisting our toolchain recognition task.

A. RISE OF EMERGING COMPILED LANGUAGES

Although it is difficult to measure accurately the popularity
(i.e., widely used) of a programming language, statistics like
the TIOBE index [18] shows that the C [52], C++ [53], and
Java [60] programming languages have been dominant over
the last 20 years. Focusing on a compiled language (without
requiring an interpreter), C and C++ remain the most
widely adopted (general-purpose) programming languages
because of speed, portability, clean support for a target CPU,
and varying standard libraries. With such advantages, core
system components (e.g., operating system, device driver,
protocol stack, compiler, interpreter) have been implemented
in C/C++. The popularity of compilation toolchains has
been aligned with the creation of executable binaries in these
languages, encompassing GCC [38], clang [39], oneAPI
DPC-++ [77] (previously known as Intel ICC2), and Visual
Studio [78] compilers. While C/C++ excel in efficiency and
flexibility, offering low-level features for memory access, the
persistent memory safety issue [79] remains a significant
concern. In this paper, we choose three emerging compiler
toolchains to address such issues: Rust [13], Go [15], and
Nim [16].

B. RUST FEATURES

Since the first stable release around 2015, Rust [13] becomes
one of the most popular programming languages, emphasiz-
ing a safe, reliable, efficient, and manageable software build.
The most unique feature of Rust is an ownership that allows a
single owner to hold every value, which controls the lifetime
(scope) of a value. This concept facilitates the seamless
development of both memory-safe (e.g., memory allocation
and deallocation without a garbage collector, no support
for a null/dangling pointer) and thread-safe program (e.g.,
transiting thread ownership from another can prevent data
races and deadlocks for concurrency). Moreover, a strictly
typed language supports a type-safe feature by restricting
a function parameter to an annotated type. Notably, Linux
began to support Rust in its kernel from version 6.1 [14].

2Intel C++ Compiler Classic (ICC) has been deprecated and will be
replaced by a oneAPI release as of 2023.

12671

IEEE Access

H. Jang et al.: ToolPhet: Inference of Compiler Provenance From Stripped Binaries

=GO nim
gc cgo nim —>l Parsing
[=]
9 . 0bi.C
Il-l_-l Parsing Parsing
g Type «— gcc
Check Parsing
& Borrow Check
Optimization
LLVM IR [cimpLE] [GimpLE |
lOptimization lOptimization lOptimization
clang (gcc) gcc (clang) gcc (clang)
% C Assembler; assembly process)
'&) object object object object
@ C System Linker (e.g., 1d, 1d.gold); linking process)

[Executable Binary |

FIGURE 1. Emerging compiler toolchains leverage the existing backend
(e.g.. GCC, clang) into building a final executable. The gray boxes denote
each toolchain’s role. Rust introduces new intermediate representations
(i.e., HIR, MIR) for type/borrow checking, generating LLVM IR to be fed
into the clang backend. The Go compiler has a similar checking routine to
create GIMPLE (GCC IR) for the GCC backend. Note that GCC can directly
take go source files with cgo for compilation. Nim translates a nim source
into C/C++/Objective C, which the GCC frontend takes it as an input. Note
that Rust utilizes clang by default, whereas Go and Nim utilize GCC.

C. RUST COMPILER

In essence, the Rust compiler (rustc) aims a reliable and quick
compilation while consuming less memory like existing
GCCl/clang toolchains. The key distinction lies in various
checking routines being part of the frontend building process,
including type confirmation and memory access. To this end,
rustc introduces several layers (Figure 1) to generate a high-
level intermediate representation (HIR) for type checking,
followed by creating a mid-level representation (MIR) for
borrow checking. Next, rustc converts MIR into LLVM
IR [39] for further optimizations, leveraging the full LLVM
backend to produce a series of machine instructions. While
the Rust compiler defaults to using LLVM as its backend,
it starts supporting the GCC backend from mid-2021. There
are two ways to build a Rust program with either ® rustc
or @ Cargo. The former directly invokes the Rust compiler,
and a user should maintain dependencies (e.g., library)
while the latter supports an automatic build system with
handy package management. For example, Cargo manages
necessary library dependencies, making it the preferred
choice for most Rust developers for easy package building.

D. GO FEATURES

Since its first release in 2012, the Go programming
language [15] has been designed for fast, efficient, and
practical programming to support large-scale development.
First, Go generates a static binary by including all runtime
code (e.g., memory allocation, garbage collection), which
does not require any dependency at runtime. By design,
a single-executable-contains-all strategy removes the hassle

12672

of maintaining dependencies in a central repository like
NPM [80] for JavaScript or crates.io [81] for Rust. Sec-
ond, Go internally maintains a garbage collector for recycling
memory on behalf of an application, which is memory safe.’
Third, part of the Go implementation entails an assembly
for performance, including math, reflect, syscall,
runtime, and crypto packages. Fourth, Go attempts to
allocate data (e.g., object) on the stack if possible, which a GC
process deallocates it when a reference is no longer available.
Finally, like Rust, Go adheres to a statically-typed language,
and supports type-safety, memory-safety, and concurrency
(with goroutines and channels). These features allow
for discovering quite a few common functions across binaries
that are built with Go.

E. GO COMPILER

One can build a Go executable in two ways: gc and
GCC go (Figure 1). Go utilizes the gc compiler by default.
Another option is using GCC go when combining Go with
existing C code is needed. The latter case allows one to
reuse (well-written) previous C code (e.g., shared libraries)
with a dynamic linking mechanism. GCC go requires an
additional installation to support both compilation and
linking flags (e.g., CFLAGS, LDFLAGS). Notably, there were
major architectural changes since version 1.5, with the Go
compiler and runtime fully transitioning to being written
in Go itself (versions prior to 1.5 were written in C [82]).
In this regard, we select all versions later than Go v1.5 for
our experiment. Go utilizes the GCC backend by default,
however, Gollvm [83] supports an LLVM-based compiler for
the Go language.

F. NIM FEATURES

Nim [16] is a relatively young programming language
(i.e., the first release in 2008), which is under active
development [84] until today as an open source. One of the
advantageous and core features in Nim is extensive metapro-
gramming support” (e.g., generics, templates, macros), which
enables one to analyze and manipulate source code with ease.
For example, it can eliminate boilerplate code (i.e., repetitive
code all around a program). Nim offers a friendly interface
that can integrate with other languages (e.g., C, C++,
Objective C, JavaScript) via its foreign function interface
(FFI) like Java Native Interface (JNI) [85] in Java or Platform
Invoke (P/Invoke) [86] in C#. Besides, Nim offers optional
checks at compilation for memory safety (e.g., reference
trace) [87] by disabling a pointer arithmetic with a garbage
collector.

3Note that the memory safety level in Go is slightly different from that
in Rust because Go thwarts an unsafe status via panicking (e.g., panic
function) and terminate a program when things go wrong, like an out-of-
bound access.

4Metaprogramming allows for generating a domain-specific language
(DSL).

SNim supports a different type of garbage collectors of one’s choice,
meaning that a developer may lift it for performance (e.g., resource-hungry
devices).

VOLUME 12, 2024

H. Jang et al.: ToolPhet: Inference of Compiler Provenance From Stripped Binaries

IEEE Access

G. NIM COMPILER

The Nim compiler directly converts Nim code into several
languages, including C, C++, Objective-C, and JavaScript
(Figure 1). This implies that Nim harnesses both frontend and
backend of the existing compiler and linker once the source
code conversion is complete. Note that Nim inserts code
pertaining to memory management (e.g., garbage collector) at
this conversion (e.g., C code generation) phase. This property
allows us to extract common binary functions in the binaries
that are built with Nim. Furthermore, Nim supports cross-
compilation, which generates an executable binary under
multiple platforms (e.g., MS Windows, *Nix, Mac OS).
The executable contains a native code that is free from a
virtual machine dependency, ensuring little overhead (i.e.,
efficiency) and handy redistribution (i.e., portability). Nim
utilizes the GCC backend by default, however, nlvm [88]
supports an LLVM-based compiler for the Nim language.

VI. EXECUTABLE WITH AN EMERGING TOOLCHAIN

This section explores the properties of a binary that has been
built with an emerging compilation toolchain, which assists
in building an appropriate model with BERT.

A. FUNCTION INVESTIGATION

ToolPhet utilizes the BERT architecture with two options for
a fine-tuning process: a classification model and a binary
similarity model. We thoroughly study on the functions in
common by default, which assists in inferring code semantics
for the similarity model.

1) INSPECTING DEFAULT FUNCTIONS

As alluded in section V, each emerging compiler toolchain
inevitably generates a bloated binary by adding quite a
few (default) subroutines, resulting in a noticeable increase
in code size. We write a simple code per language
with an empty function (e.g., main ()), building an
executable. This allows us to identify default functions
that have been inserted by a different toolchain. As a
baseline, we build four executable binaries with GCC
7.5.0, 9.4.0, and clang 6.0.0, 10.0.0. We observe that
the functions in those binaries are mostly inserted by a
system linker (e.g., 1d) such as the C runtime (CRT)
routines (e.g., _start, (de)register_tm_clones,
frame_dummy, libc_csu_init, fini). Table 1
demonstrates the comparison of the baseline with an
executable binary built with varying emerging toolchains.
We chose a handful of different versions considering a release
date, version interval, and feature update, accordingly. Our
finding shows a distinct code increase (in terms of the
number of functions) due to supporting the feature of an
emerging toolchain. Note that 1.5 or later versions of Rust are
purposefully selected due to a major update (i.e., the whole
compiler has been written in Rust itself while in C for prior
versions).

VOLUME 12, 2024

TABLE 1. Comparison of the number of default (binary) functions
between an emerging compiler toolchain and an existing one. As a
baseline, we build an executable with an empty main () function.
We observe that the code size distinctively increases by an order of
magnitude (10-100 times), indicating the emerging toolchains

tend to add varying feature codes.

Toolchain Compiler Release Number of Code Size
Version Date Functions (Bytes)
1.52 May.06,2021 416 0x2£f423
Rust 1.56 Oct.21,2021 462 0x33cd3
1.58 Jan.13,2022 461 0x33c33
1.62 Jun.30,2022 529 0x35643
1.10 Feb.16,2018 955 Ox4blaf
Go 1.12 Feb.25,2019 981 0x4e990
1.15 Aug.11,2020 1,021 0x5ccf0
1.18 Mar.15,2022 999 0x54270
1.0.10 Oct.27,2020 129 O0xd7a5
Nim 1.4.8 May.25,2021 151 0x13£25
1.6.10 Nov.23,2022 148 0xe725
7.5.0 Nov.04,2019 8 0x195
GeC 9.4.0 Jun.01,2021 8 0x175
clang 6.0.0 Mar.08,2018 9 0x172
10.0.0 Mar.24,2020 9 0x175

2) RECOGNIZING COMMON FUNCTIONS

Identifying common (binary) functions across the same
version of a compiler toolchain is of significance because
they play a crucial role to offer a clue of its provenance.
We hypothesize that it is possible to deduce compiler
toolchain provenance if a set of common functions were
observed in a binary at all times. Our hypothesis lies in
the observation that a set of common (and special-purpose)
routines would be inserted by a compiler toolchain. However,
this is not always true because functions that have an identical
(symbol) name may vary depending on the version according
to our thorough analysis, which we revisit in section VII-B.
To this end, we collect our own dataset (section IX-A),
generating hundreds of executables. Then, we record actual
function names with mapping information from a linker (i.e.,
linker map) that provides an option (e.g., —M in 1d) to output
the mapping of a code section (i.e., virtual address of an
address-taken function). For example, in Rust, we can obtain
full mappings with

rustc —g —-o out -C link-args=
“W-W1l, -Map=output.txt” src.rs
when consolidating all internal object files.

3) EXPERIMENTAL RESULTS

We discover that (at least) hundreds of functions are
present by default when a binary has been built with a
certain version of Go, Nim, and Rust, which can be the
birthmark of a compiler toolchain. Table 2 summarizes
the number of common functions per each toolchain
and version. For example, 999 functions are observed in
common with Go 1.18 by their function symbol names,
and 242 common functions are present across all different
versions.

12673

IEEE Access

H. Jang et al.: ToolPhet: Inference of Compiler Provenance From Stripped Binaries

TABLE 2. The number of common functions across different versions per
emerging toolchain. We filter out functions (with our own dataset in
section IX-A that are appeared from all versions by function symbol
name. Then, we examine the similarity of those functions (in terms of
code semantics) with fuzzy hash, revealing that 60, 54, and 57 common
functions that can be fingerprintable for our purpose (Section VII-B).

Toolchain Version Number of Common Functions
1.52 340

1.56 386

Rust 1.58 385
1.62 438

All versions 251 (60)

1.10 955

1.12 981

Go 1.15 1,021
1.18 999

All versions 242 (54)

1.0.10 129

Nim 1.4.8 145
1.6.10 142

All versions 53 (87)

B. EXECUTABLE BINARY FEATURES
This section briefly covers the features of an executable that
is built by each emerging toolchain.

1) RUST BINARY

As in Table 2, a set of unique functions are discovered for
each different version. Our observation shows that common
functions from the binaries of our choice (Table 3) include
runtime functions (e.g., std: : panicking package), name
mangling functions (e.g., rustc_demangle package),
core package functions (e.g., core: :fmt, core: :ptr,
core::slice, core: :str), and system functions (e.g.,
std::sys, std::sys_common, std::thread). In
Rust binaries, reliance on packages (and their functions)
imported through source code is commonplace. Note that
a Rust function name adheres to its designated mangling
rule [89]. A Rust binary integrates varying built-in functions
like core: :panicking: :panic_boundscheck that
is dedicated to examining the size of dynamically allocated
objects to prevent memory errors.

2) GO BINARY

Akin to Rust, producing a static Go binary comes with a
number of (built-in) language-specific sub-routines, which
unavoidably increases its size. The common functions
in Table 2 predominately belong to the following pack-
ages (for garbage collection, scheduling, concurrency)
including fmt, os, reflect, runtime, strconv,
syscall, type, unicode, etc. For instance, Go utilizes
goroutines for concurrency programming, which is
invoked by the runtime.schedinit function. Addi-
tionally, certain package implementations are composed
in (architecture-dependent) assembly for enhanced perfor-
mance, serving as another distinctive characteristic of a Go
binary when the package is utilized. Interestingly, a Go build

12674

CDF

0.0

0 20 40 60 80 100

Fuzzy Hash Values
FIGURE 2. CDF of fuzzy hash values with common functions across
different versions of each emerging compiler toolchain. We generate all
function pairs by grouping identical functions according to a function
name, computing the fuzzy hash value of each pair. Interestingly, quite a
few pairs turn out to have a different function body (e.g., version
updates). We choose similar function pairs (e.g., Hash value > 70) to build
a binary similarity model with the dataset.

specifies an entry point function that relies on a system
architecture (e.g., rt0_linux_amd64 in Linux).

3) NIM BINARY

Unlike Rust and Go, the Nim compiler converts a nim
source to the existing languages (e.g., C, C++, Objective C),
followed by taking full advantage of the frontend (e.g.,
IR generation, optimization) and backend (e.g., instruction
selection, assembly) of either GCC or clang (Figure 1).
Hence, we observe that a number of subroutines are
embedded all the time for supporting Nim features in a
converted source code; e.g., functions for garbage collection:
(initGC, nimGC_setStackBottom, nimGCvisit),
functions for checking an overflow (raiseOverflow),
functions for maintaining a data type and a system
module (appendString, addChar, addInt, alloc,
dealloc). Note that a converted C source can be found at
the location of SHOMES/ . cache/nim/ [binary_name
_r|d] (r for release, and d for debugging). Another unique
property of a Nim binary is that all user-defined functions
are invoked within the NimMainModule function (by
NimMainInner).

VIi. TOOLPHET DESIGN

A. OVERVIEW

Figure 3 depicts the overview of ToolPhet that consists of
four phases. As a preprocessing process, we identify function
boundaries from an executable binary, disassemble every
function with IDA Pro, and normalize it for being properly
fed into a neural network (Section VII-B). At this phase,
we prepare all required dataset for further model generation,
including tokenized disassembly, task-dependent dataset with
a label. Next, ToolPhet adopts the BERT architecture [36],
[40], [41] that requires two training steps: pre-training for
generating a generic model (Section VII-C), and fine-tuning
for generating a specific model tailored for a downstream task
(Section VII-D). To tackle a compiler toolchain provenance

VOLUME 12, 2024

H. Jang et al.: ToolPhet: Inference of Compiler Provenance From Stripped Binaries

IEEE Access

Data Preparation (§6.2) Generic Model for Assembly (§6.3)

Specialized Model for Downstream Task (§6.4) Toolchain Inference (§6.5)

Embeddings

{ .

I

L 4 = | EFEE EEEE - EENE
| — = | ;

! e ! ! Feed-forward Neural Network
! = | I

I I I

I I I

I I I

I I I

I I I

I I I

I 1 {

BERT (Masked Language Model only)

Binaries Normalized

Functions

1 1
— | [1505] |[Token 0| [MasKk1][Token 1) tEOS] |

N

Rust | GCC | 4
4 @‘ Go |clang @. Classification =] Function
] I
/ Nim Task Model | N GCC/clang/Rust/Go/Nim?
[Al]

Generic
Model

i I .
\ FUN #2 Code Similarity! | Target Functions of

f
Toolchain | | Target

1
1
_____ J U
{
1

Detection |—»! Function Our Interest

Task Model |
_

|
|
I
I
|
|
|
|
)
|
|
I
I
1
I
|
)

N Similar/Dissimilar?

|
True or False !

FIGURE 3. Overall ToolPhet workflow that consists of four components: preparing a dataset (Section VII-B), creating a generic model for assembly
(Section VII-C; known as pre-training in BERT), generating a special model for compiler provenance (Section VII-D; known as fine-tuning), and toolchain
inference (Section VII-E). Note that ToolPhet defines two separate downstream tasks for the same goal, generating a classification model and a similarity
detection model. The former directly infers a toolchain, while the latter determines if a group of functions are similar to the pre-defined functions that

can represent each toolchain (Section VI-B).

problem, we define two downstream tasks: @ a classification
task that directly learns the properties of a function that
belongs to an emerging toolchain, and @ a binary similarity
detection task that determines a toolchain by confirming the
presence of a set of unique functions in a binary.

B. DATA PREPARATION

1) INSTRUCTION NORMALIZATION

We leverage IDA Pro [31], one of the most popular reverse
engineering tools, to recognize the boundary of a function,
followed by disassembling the function. Then, we utilize
a well-balanced instruction normalization [70] for better
binary code representations, ensuring the preservation of the
original code semantics while mitigating out-of-vocabulary
(OOV) concerns. This normalization technique takes a single
instruction (i.e., opcode and zero or more operands) as a
token.

2) FINGERPRINTABLE FUNCTIONS WITH FUZZY HASH

Recall that ToolPhet defines two downstream tasks; one of
them is a binary similarity detection task (during fine-tuning).
This task involves assigning labels to pairs of functions to
denote their similarity or dissimilarity. A naive approach
would be generating a function pair where two function
symbol names are identical, however, we discover that quite
a few functions are not consistent upon a version update.
In other words, the same function (by name) could have a
different body (i.e., instructions) across different versions of
a toolchain. We harness a fuzzy hash algorithm to check
how two functions match each other. Figure 2 illustrates a
cumulative distribution function (CDF) of fuzzy hash values
from each compiler toolchain, revealing that a significant
number of function name pairs (initially assumed to be
identical) are indeed different. For example, approximately
40%, 50%, and 30% function pairs of Rust, Go, and Nim
are considerably different (i.e., fuzzy hash value = 0),
respectively. This is probably because of adding, deleting
or altering the content or structure of a function while a
version update. Hence, we choose a fraction of the whole
function pairs with a threshold (7") or above (i.e., similar
function body) for generating a binary similarity dataset.
To this end, we extract a list of fingerprintable functions
in common whose fuzzy hash values are above a certain

VOLUME 12, 2024

threshold (e.g., T = 70) (i.e., changes between versions are
not significant). We finally collected 60, 54, and 57 common
functions that meet the threshold for Rust, Go, and Nim
compilers, respectively. Note that we utilize these functions
of our interest when creating a model for binary similarity
detection.

3) EXCLUDED FUNCTIONS

As an emerging toolchain entails solely the frontend while
adopting the backend of existing toolchain, we exclude all
functions inserted by a linker (e.g., C Runtime functions).

C. GENERIC EMBEDDING MODEL FOR ASSEMBLY
ToolPhet follows the BERT scheme that creates a generic
model via pre-training. Conceptually, similar to a natural
language processing domain, we view an instruction (i.e.,
token) as a word, and a function as a sentence. This step learns
the relationships of different instructions (i.e., assembly
language) within a function. The original BERT incorporates
both the Masked Language Model (MLM), which masks a
fixed portion of the input (e.g., 15%) and Next Sentence
Prediction (NSP). However, we rule out NSP because the
proximity of a function is not determined by its location but
the relationship of a call invocation (i.e., caller and callee with
call and ret instructions). It is noteworthy to mention that
we retrained a generic model with our own dataset because
the state-of-the-art model from BinShot [9] utilizes binaries
that are compiled with GCC or clang.

D. SPECIALIZED MODELS FOR DOWNSTREAM TASK

The BERT scheme allows one to fine-tune a generic assembly
embedding for inferring a compiler provenance task, which
generates specialized models. Note that a separate dataset
with a label is required (i.e., supervised learning) for fine-
tuning. We adopt two approaches as a fine-tuning task:
toolchain classification task and binary code similarity
detection task.

1) TOOLCHAIN CLASSIFICATION (TC) MODEL

The toolchain classification model directly learns the internal
features (i.e., relationships between tokens) of each emerging
language on top of the generic assembly embedding model
(Section VII-C). The model emits the inference of five

12675

IEEE Access

H. Jang et al.: ToolPhet: Inference of Compiler Provenance From Stripped Binaries

toolchain categories when a function is given. For computing
optimal network parameters (6) at fine-tuning layers, we use
cross-entropy as a loss function as follows:

6 = arg min > plely)log(p(cl$)) e))

ceC

2) CODE SIMILARITY (CS) DETECTION MODEL

The binary code similarity detection model aims to predict
if a given code snippet (i.e., assembly function) is similar to
a compared one. We set a code granularity to be a (binary)
function, feeding it to the model as an input. For further
comparison, we pre-define common functions of our interest
from each compilation toolchain, which can be the birthmark
of the toolchain. As described in Section VII-B, we filtered
out a fingerprintable function with the fuzzy hash for training
a similarity detection model. The weights are adjusted based
on the generic model (Section VII-C) so that a binary
classifier can learn a weighted distance vector with a binary
cross entropy loss function as introduced by BinShot [9].
Note that the weighted distance differs from a scalar distance
like a cosine similarity between two vectors. The distance
vector between two functions (i.e., X and Y) is learned during
training with the following equation where D represents the
Euclidean distance embedding in the n dimensional space
(Equation 2). Likewise, when two functions (i.e., X; and X;)
are given, the distance function, F(X;, X;), can be obtained
from a fully connected layer where X; and X; represent the
two arbitrary functions from the pretrained BERT model
(Equation 3).

DX,Y)={e1,...,en}, i =

D -2 @
i=1

F(Xi, Xj) = o(D(X;, Xj) - W + b) 3)

Then, we can determine the similarity of the two functions
with a threshold of C (e.g., 0.5); similar if F(X;, X;) > C or
dissimilar otherwise.

E. INFERENCE OF TOOLCHAIN PROVENANCE

The process to determine the compilation toolchain with a
number of functions in a given binary is slightly different
depending on a specialized model.

1) INFERENCE WITH THE TC MODEL

The toolchain classification model takes a set of (normalized)
functions in a target binary, and then produces the inference
of compilation tools for each function (e.g., Rust, Go, Nim,
GCC, clang). For instance, Deadbolt [90] has 2,383 functions,
resultingin Rust: 2,Go: 2365,Nim: 0,GCC: 8,and
clang: 8. In this case, we compute the confidence of the
Deadbolt’s toolchain being Go with 0.992.

2) INFERENCE WITH THE CS MODEL
In the case of the code similarity detection model, we
randomly select K% of entire functions in a binary,

12676

comparing them with (pre-selected) common functions that
represent a toolchain. This is because @ common functions
are appeared in a location-agnostic fashion, and @ unbal-
anced similar/dissimilar pairs may distort a prediction; i.e.,
dissimilar function pairs would increase as with a number of
user-defined functions, which results in growing the number
of false positives. Furthermore, the performance of ToolPhet
would be degraded with the number of comparisons; e.g., the
pairs of thousands of functions with hundreds of common
functions could require a million times of comparisons. With
athreshold (C) of the comparison results that are true (similar
pair), we infer that a binary falls into the category of a certain
toolchain.

VIIl. IMPLEMENTATION
We develop ToolPhet with PyTorch 1.10.0 [91], one of the
most popular frameworks for machine learning.

A. GLOBAL HYPERPARAMETERS

ToolPhet has three global hyperparameters, all of which are
associated with a code similarity detection model: @ we elect
a similar function pair whose body is larger than a fuzzy
hash value of T for a training dataset, @ a small portion (K)
of functions are chosen for testing (inference), and @ we
determine that a binary has been compiled with a certain
toolchain when similar pairs are above C We setup T = 70,
K = 0.1, and C = 0.5 for our experiment, which can be
adjustable.

B. HYPERPARAMETERS FOR BERT

ToolPhet adopts the original strategy of BERT MLM by
masking around 15% of the input tokens at random.
We apply the following BERT hyperparameters to ToolPhet:
256 dimensions for instruction embeddings, 128 hidden
layers, eight attention layers, eight heads, and a maximum
input size of 256. Additionally, we utilize the Adam
optimizer with a learning rate of 0.0005, and a dropout rate
of 0.1.

IX. EVALUATION

This section evaluates ToolPhet with one deterministic
approach (e.g., DIE [46] tool) and five machine-learning-
based models for comparison, including NeuralCI [25],
O-glassesX [26], SAFE [92], LSTM [48], and RNN [47].
Note that we utilize SAFE [92] for function embeddings
because it does not aim to directly perform any task.

Environmental Setup: We utilize the server for model
training and evaluation on top of Ubuntu 20.04 with Intel(R)
Core(TM) i9-10900X CPU @ 3.70GHz (10 cores), 128 GB
RAM, and Quadro RTX 8000 GPU card. We install CUDA
that is compatible with PyTorch 1.10.0.

Evaluation Metrics: Let the number of true positives, false
positives, true negatives, and false negatives be TP, FP, TN,
and FN, respectively. Then, the metrics of precision (P),
recall (R), F1 score (F1), and accuracy (A) can be computed

VOLUME 12, 2024

H. Jang et al.: ToolPhet: Inference of Compiler Provenance From Stripped Binaries

IEEE Access

TABLE 3. We collect varying sources for GCC, clang, Rust, Go, and Nim,
building 1,683 executables in total. We adopt a high optimization level or
a release mode by default that can be seen in the wild. Note that we
leave debugging information available for ground truth.

Toolchain Version # of Binaries Optimization level
1.52 122 O3
1.56 122 03

Rust 1.58 122 03
1.62 122 03
Total 488 (High optimization)
1.10 100 Default
1.12 100 Default

Go 1.15 100 Default
1.18 100 Default
Total 400 (Release mode)
1.0.10 101 Default

Nim 1.4.8 101 Default
1.6.10 101 Default
Total 303 (Release mode)
7.5.0 125 02
9.4.0 121 02

Gee Total 246 (High optimization)
6.0.0 125 02

clang 10.0.0 121 02 .
Total 246 (High optimization)

as following:
TP TP 2PR
P=——r R=>—F Fl=——7 (4
TP + FP TP + FN P+R
TP + TN)
TP+ TN + FN + FP

Research Questions: We raise the following three research
questions to assess ToolPhet in terms of @ the effectiveness
compared to other ML-based models, @ the comparison with
a signature-based tool, and ® the robustness to the unseen
binary corpus.

« RQ1. How effective is ToolPhet compared to other ML
baselines for a compilation toolchain prediction task
(Section IX-B)?

« RQ2. How effective is ToolPhet compared to a signature-
based tool? (Section IX-C)?

« RQ3. How robust is ToolPhet for completely unseen
datasets? (Section IX-D)?

A. DATASET AND BASELINE MODELS

1) BINARY CORPUS

Table 3 briefly describes our dataset. We collect a variety
of open-source programs written in Rust, Go, and Nim on
GitHub [44] and Rosetta [45]. For GCC/clang compiler
binaries, we utilize GNU Utilities [93] (i.e., binutils,
coreutils, and findutils). We build 1,683 executa-
bles in total on the x86-64 architecture. We follow a default
option provided by each toolchain (e.g., high optimization
level, release mode), but leave debugging information for
obtaining ground truth.

VOLUME 12, 2024

2) DATASET FOR MODEL GENERATION

We leverage BERT (unsupervised learning) into build
a generic model by incorporating the entire 1,082,079
functions. This process results in the generation of 5,754
vocabularies (tokens) from those functions. We prepare
additional datasets for building a toolchain classification
model and a code similarity detection model (supervised
learning). The former dataset simply contains a pair of
(normalized function, label) where the label is an element
of {Rust, Go, Nim, GCC, clang}. The latter dataset contains
both similar and dissimilar (normalized) function pairs with
a label of {True, False}. A similar pair (True) is chosen as
the two functions with @ an identical symbol name from a
different version of the same toolchain, and @ T = 70 or
higher of a fuzzy hash value. Meanwhile, a dissimilar pair
(False) is chosen as the two functions from a different
toolchain or the same toolchain but different function bodies.

3) BASELINE MODELS

To demonstrate the effectiveness of ToolPhet, as a base-
line of a machine learning approach, we develop two
naive neural-network-based models with RNN [47] and
LSTM [48] (i.e., multi-class classification). Additionally,
we built two state-of-the-art compiler identification tools
based on deep learning. First, we reproduce CNN-based
O-glassesX [26] with our dataset for direct comparison.
The original implementation of O-glassesX comes with two
options; a model with disassembly and a model without it.
We adopt the former setting for a fair comparison based on
our observation of large performance degradation from the
latter. Second, we prepare another model with NeuralCI [25].
The original implementation of NeuralCI comes with two
options; CNN [94], [95] and RNN [47] structures. We adopt
an RNN (i.e., GRU [96]) model with Attention [97], [98],
which shows the best performance. Note that we harness the
function embeddings from SAFE [92] in comparison with the
ToolPhet’s similarity model because SAFE leverages Self-
Attentive Neural Network to represent an assembly code.
Finally, we exclude BinProv [6] because its source code has
yet been opened at the time of writing.

B. EFFECTIVENESS OF TOOLPHET

To validate the effectiveness of the ToolPhet’s TC model,
we conducted performance comparisons with the above
four baseline models. Table 4 summarizes the precision,
recall, and F1 between ToolPhet and the baselines. Overall,
ToolPhet achieves the best performance on macro-average
with an F1 of 0.978. The RNN model shows the lowest F1
score, which we hypothesize that the RNN model suffers
from a long dependency problem due to the length of
input tokens (Rust :190, Go:135,Nim:142, GCC:116,
clang:141 on average). Meanwhile, the LSTM model
moderately handles such a limitation with a memory cell.
In case of the O-glassesX and NeuralCI models, they show
similar or slightly lower performance (e.g., F1 of 0.894 and

12677

IEEE Access

H. Jang et al.: ToolPhet: Inference of Compiler Provenance From Stripped Binaries

TABLE 4. Comparison of ToolPhet with other machine-learning-centered
baseline models. Our toolchain classification model demonstrates the
highest F1 of 0.978 on macro-average. P, R, and F1 denote a precision,
recall and F1 score, respectively.

Metric TOOLPHET NeuralCI O-glassesX LSTM RNN
P 0.960 0.997 0.956 0.960 0.999
Rust R 0.999 0.999 0.966 0.993 0.609
F1 0.979 0.998 0.961 0976 0.757
P 0.995 0.720 0.980 0.989 0.137
Go R 0.997 0.999 0.955 0.747 0.708
F1 0.996 0.837 0.967 0.851 0.230
P 0.986 0.981 0.754 0.589 0.062
Nim R 0.997 0.518 0.756 0.975 0.890
F1 0.996 0.678 0.755 0.734 0.116
P 0.961 0.901 0.912 0.957 0.058
GCC R 0.976 0.856 0.906 0.980 0.357
F1 0.968 0.878 0.909 0.968 0.100
P 0.985 0.965 0.898 0.960 0.003
clang R 0.928 0.892 0.904 0.979 0.099
F1 0.956 0.927 0.901 0.969 0.006
P 0.977 0913 0.896 0.899 0.252
Macro-Avg R 0.979 0.853 0.892 0936 0.713
F1 0.978 0.864 0.894 0.904 0.242

[] TOOLPHET [NeuralCl 72 0O-glassesX . LSTM KX RNN
1.0 m

/ ¥

7

0.8 7

?

7

g0.6 ’
: g3
g
0.4 ’ o
1
0.2 ’ ,3
0.0— ﬂ :::

Rust Go Nim GCC cl

)

ng

FIGURE 4. The performance comparison with AUC (Area Under the ROC
Curve) between ToolPhet and other machine learning-centric baseline
models. The AUC values for each model are presented for individual
toolchains. Our toolchain classification model exhibits similar or higher
AUC scores for each compilation toolchain compared to other baseline
models.

0.864 on macro-average) than ToolPhet. Additionally, as can
be seen from the results in Figure 4, ToolPhet shows better
performance in overall AUC scores compared to the other
models: 0.998, 0.879, 0.930, 0.966, and 0.529 for ToolPhet,
NeuralCI, O-glassesX, LSTM, and RNN, respectively. This
indicates that our model achieves a robust performance
in inference accuracy compared to previously introduced
models (i.e., NeuralCI, O-glassesX) and naive neural-
network-based models (i.e., RNN, LSTM) in the prior
research.

Answer to RQ1. Our empirical results demonstrate
that the effectiveness of the TC model for a compiler
toolchain inference task, outperforming existing base-
line models.

C. COMPARISON WITH A SIGNATURE-BASED TOOL

In this section, we directly compare the effectiveness of the
ToolPhet’s TC model with that of DIE [46], one of the well-
known signature-based tools.

12678

TABLE 5. Performance comparison between the ToolPhet 's toolchain
classification model and DIE [46] with the 300 executable binaries (i.e.,
20 binaries for each version). The table demonstrates the number of
binaries that DIE and ToolPhet successfully predict their toolchain. DIE
accurately infers Go, GCC, and clang binaries but fails to detect Rust and
Nim cases. In contrast, our toolchain classification model makes accurate
predictions for every case.

Toolchain # of Total Binaries DIE TOOLPHET
Rust 80 0 80
Go 80 80 80
Nim 60 0 60
GCC 40 40 40
clang 40 40 40
Total 300 160 300
(Ratio) (100%) (53.3%) (100%)
1) DIE TOOL

DIE internally maintains a signature database on file
information, thereby it can deterministically emit the property
of a given file including a compiler toolchain (e.g., compiler,
linker). Additionally, DIE offers a feature to write one’s
own signature with a script in a flexible manner. However,
the restriction of a signature-based tool is well-known: @ it
cannot detect any (missing) information with the absence of
a signature, and @ a signature database must be constantly
maintained.

2) COMPARISON RESULTS

Table 5 summarizes the results of the toolchain prediction
model in comparison with DIE. ToolPhet accurately infers the
whole samples. While DIE successfully predicts all Go, GCC,
and clang samples with appropriate signatures, it fails other
cases (e.g., Rust, Nim) due to the absence of corresponding
signatures. Although the missing signatures could be further
added, we stress that ToolPhet can reduce such maintenance
overheads.

Answer to RQ2. ToolPhet shows its effectiveness over
a signature-based tool without the need of maintaining
a signature database.

D. ROBUSTNESS OF TOOLPHET

This section expands our experiment to evaluate the robust-
ness of ToolPhet with “Unseen binaries” because
built-in functions across different versions from emerging
compilation toolchains may vary because of frequent updates
(Figure 2).

1) UNSEEN CORPUS

We deliberately generate the additional corpus of

“Unseen binaries” that are distinct from both training
and testing. We choose three versions from each toolchain:
Rust: v1.46, v1.64, v1.68, Go: v1.13, v1.19, v1.20, and Nim:
v1.2.18, v1.4.0, v1.6.12. We generate 20 binaries for each
version, resulting in a total of 180 binaries.

VOLUME 12, 2024

H. Jang et al.: ToolPhet: Inference of Compiler Provenance From Stripped Binaries

IEEE Access

TABLE 6. Performance comparison between the ToolPhet 's toolchain
classification model and DIE [46] with the additionally generated unseen
binary corpus. We discover that the model fails to predict some cases
built with Nim. We confirm that the capability of DIE relies on the
availability of signatures (e.g., Rust and Nim binaries undetected).

Toolchain # of Total Binaries DIE TOOLPHET
Rust 60 0 60
Go 60 60 60
Nim 60 0 30
Total 180 60 150
(Ratio) (100%) (33.3%) (88.9%)

1.0 —— ==
== = Training version - ey
= Unseen version 'I
0.8 1 1
I
|
061 Il
[T
a) 1
v 1
0.4 4 I
1
1
0.2 1

0.0 ! : : ! v) .
-1.00 -0.75 -0.50 -0.25 0.00 025 050 075 1.00
Cosine Similarity Values

FIGURE 5. As Nim compilation involves both the frontend and backend of
the GCC compiler, we investigate the similarity of common function
bodies between training and unseen corpus. It turns out that the
functions within unseen Nim binaries are similar to GCC functions (e.g.,
around 50%), causing the confusion in our toolchain classification model.

2) RESULTS

Table 6 briefly displays the results of the toolchain prediction
model in comparison with DIE. As one may expect, DIE
accurately predicts the cases only when the signature is
present in the database (e.g., Go). Meanwhile, our TC model
adequately infers a toolchain for Rust and Go samples
but half of Nim samples (i.e., 88.9%). It is noteworthy to
mention that the samples are compiled with unseen versions
while training. We further investigate faulty prediction cases
where confusion arises in our TC model. Recall that Nim
compilation utilizes both the frontend and the backend
of the existing compiler (e.g., GCC), which may cause
misclassification. Figure 5 illustrates that the distribution of
the common function embeddings (i.e., pre-trainined BERT
embedding) in the unseen corpus differs from the embeddings
in the original training set.

3) CODE SIMILARITY DETECTION MODEL

We trained another downstream model to increase the
robustness of ToolPhet, which can better deduce code
semantics defining a code similarity detection downstream
task. The model aims to detect a function that is semantically
similar to the identified common functions in Section VII-B.
Note that we utilize the BinShot [9] framework. As in Table 7,
the CS model successfully predicts all unseen binaries with an

VOLUME 12, 2024

TABLE 7. Experimental results for the ToolPhet’s code similarity (CS)
model with the unseen dataset in Table 6. The model predicts all binaries
with a high F1. We believe that both classification and similarity models
can be complementary for accurate prediction. Furthermore, to
demonstrate how function embeddings are well tuned for a code
similarity task, we compare performance of ToolPhet with that of SAFE's
embeddings (Note that SAFE merely provides a function-unit vector). P, R,
and F1 denote a precision, recall, and F1 score, respectively.

Toolchain Metric CS model CS model
(BERT embedding) (SAFE embedding)
P 0.904 0.456
Rust R 0.990 0.622
Fl1 0.971 0.565
P 0.894 0.636
Go R 0.990 0.670
Fl 0.949 0.613
P 0.918 0.845
Nim R 0.999 0.376
Fl1 0.957 0.519
P 0.959 0.626
Macro-Average R 0.998 0.571
Fl1 0.978 0.561

average F1 of 0.978. Furthermore, we attempt to perform the
code similarity task with another embedding from SAFE [92],
which shows the effectiveness of ToolPhet ’s embedding.

Answer to RQ3. Our experiment with an unseen binary
corpus shows that ToolPhet may misclassify certain
cases with our TC model. The CS model for inferring
code semantic difference can address this issue.

X. DISCUSSION AND LIMITATIONS

A. BINARY REPRESENTATIVENESS

Although the popularity of emerging toolchains has been
increasing, the number of applications with them in the
wild is still far less than those with previous toolchains
(e.g., GCC, clang). In this regard, prior study of toolchain
provenance focuses on mostly GCC and clang [4], [4], [6],
[25], [26], [28] with a popular dataset like GNU utilities [93]
and OpenSSL [99]. Our dataset collected from Github and
Rosetta would be insufficient, which may be difficult to
generalize our model at this point.

B. FALSE POSITIVE RATE WITH A CODE SIMILARITY
MODEL

Our observation shows that a ToolPhet’s code similarity
detection model might be indecisive for a certain case.
Recall that we cannot pinpoint common functions that
fingerprint a particular toolchain in the beginning because
they are spread out in a binary, choosing part of functions
at random. This inevitably contains a user-defined function
that may be similar to a list of functions of our interest for
comparison, highly causing a false positive rate. Furthermore,
the list might be ineffective if a representative function
would have been considerably updated as shown in Figure 2.
We leave such limitations to be addressed in our future
research.

12679

IEEE Access

H. Jang et al.: ToolPhet: Inference of Compiler Provenance From Stripped Binaries

C. COMPILER TOOLCHAIN PROVENANCE

Previous work on compiler toolchain provenance has typi-
cally involved the identification of a toolchain, an optimiza-
tion level, or a compiler version. This work merely focuses
on a toolchain itself because emerging toolchains sometimes
do not offer an optimization level (e.g., O0-O3, Os) but an
easily identifiable mode (e.g., debugging, release). We leave
the recognition of an emerging compiler toolchain version as
part of our future work.

XI. CONCLUSION

In this paper, we introduce ToolPhet, a BERT-assisted end-
to-end system for inferring the provenance of an emerging
compiler toolchain (e.g., Rust, Go, Nim) as well as GCC
and clang. We first train a generic model with executable
binaries built from the emerging toolchain, then fine-tune
the model for a downstream task in two different ways; i.e.,
toolchain recognition with a toolchain classification model,
and with a code similarity detection model. Our experimental
results show that ToolPhet outperforms existing approaches
including both a signature-based one (e.g., DIE) and neural-
network-based ones (e.g., CNN, RNN, LSTM).

ACKNOWLEDGMENT

Any opinions, findings, conclusions, or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the sponsor’s views.

REFERENCES

[1] T.Bao, J. Burket, M. Woo, R. Turner, and D. Brumley, “BYTEWEIGHT:
Learning to recognize functions in binary code,” in Proc. 23rd USENIX
Conf. Secur. Symp. (SEC). Berkeley, CA, USA; USENIX Association,
2014, pp. 845-860.

[2]1 A. Di Federico, M. Payer, and G. Agosta, “Rev.Ng: A unified binary
analysis framework to recover CFGs and function boundaries,” in Proc.
26th Int. Conf. Compiler Construct. New York, NY, USA: Association for
Computing, Feb. 2017, pp. 131-141.

[3] E. C. R. Shin, D. Song, and R. Moazzezi, “Recognizing functions in

binaries with neural networks,” in Proc. 24th USENIX Conf. Secur. Symp.

(SEC). Berkeley, CA, USA; USENIX Association, 2015, pp. 611-626.

N. Rosenblum, B. P. Miller, and X. Zhu, “Recovering the toolchain

provenance of binary code,” in Proc. Int. Symp. Softw. Test. Anal. (ISSTA).

New York, NY, USA: Association for Computing, Jul. 2011, pp. 100-110.

[51 N. E. Rosenblum, B. P. Miller, and X. Zhu, “Extracting compiler
provenance from program binaries,” in Proc. 9th ACM SIGPLAN-
SIGSOFT Workshop Program Anal. Softw. Tools Eng., May 2010,
pp. 21-28.

[6] X. He, S. Wang, Y. Xing, P. Feng, H. Wang, Q. Li, S. Chen, and

K. Sun, “BinProv: Binary code provenance identification without

disassembly,” in Proc. 25th Int. Symp. Res. Attacks, Intrusions Defenses

(RAID). New York, NY, USA: Association for Computing, Oct. 2022,

pp. 350-363.

Z. Luo, T. Hou, X. Zhou, H. Zeng, and Z. Lu, “Binary code similarity

detection through LSTM and Siamese neural network,” ICST Trans.

Secur. Saf., vol. 8, no. 29, Nov. 2021, Art. no. 170956.

[8] D. Tian, X. Jia, R. Ma, S. Liu, W. Liu, and C. Hu, “BinDeep:
A deep learning approach to binary code similarity detection,” Expert
Syst. Appl., vol. 168, Apr. 2021, Art. no. 114348. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0957417420310332

[9] S. Ahn, S. Ahn, H. Koo, and Y. Paek, “Practical binary code similarity
detection with BERT-based transferable similarity learning,” in Proc.
38th Annu. Comput. Secur. Appl. Conf. (ACSAC), Austin, TX, USA.
New York, NY, USA: Association for Computing Machinery, 2022,
pp. 361-374.

[4

[7

12680

[10] R. A. Erinfolami and A. Prakash, “DeClassifier: Class-inheritance
inference engine for optimized C++4- binaries,” in Proc. ACM Asia Conf.
Comput. Commun. Secur. (ASIACCS). New York, NY, USA: Association
for Computing, Jul. 2019, pp. 28—-40.

[11] J. He, P. Ivanov, P. Tsankov, V. Raychev, and M. Vechev, ‘“Debin:
Predicting debug information in stripped binaries,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur. (CCS). New York, NY, USA:
Association for Computing, Oct. 2018, pp. 1667-1680.

[12] J. Patrick-Evans, L. Cavallaro, and J. Kinder, “Probabilistic naming of
functions in stripped binaries,” in Proc. Annu. Comput. Secur. Appl. Conf.
(ACSAC). New York, NY, USA: Association for Computing, Dec. 2020,
pp. 373-385.

[13] N. D. Matsakis and F. S. Klock, “The rust language,” ACM SIGAda Ada
Lett., vol. 34, no. 3, pp. 103—104, Nov. 2014.

[14] ZDNet. (2022). Linus Torvalds: Rust Will Go Into Linux 6.1.
[Online]. Available: https://www.zdnet.com/article/linus-torvalds-rust-
will-go-into-linux-6-1/

[15] J. Meyerson, “The go programming language,” IEEE Softw., vol. 31,
no. 5, p. 104, Sep. 2014.

[16] A. Rumpf. (2022). A Statically Typed Compiled Systems Programming
Language. [Online]. Available: https://nim-lang.org/

[17] P. Jansen. (2022). Tiobe Index—The Go Programming Language.
[Online]. Available: https://www.tiobe.com/tiobe-index/go/

[18] P. Jansen. (2022). Tiobe Index. [Online]. Available: https://
www.tiobe.com/tiobe-index/

[19] ZDNet. (2021). Malware Rewritten in the Rust Programming Language.
[Online]. Available: https://www.zdnet.com/article/this-malware-has-
been-rewritten-in-the-rust-programming-language-to-make-it-harder-to-
spot/

[20] ZDNet. (2021). Go Malware is Now Common, Having Been Adopted
By Both APTs and E-crime Groups. ZDNet. [Online]. Available:
https://www.zdnet.com/article/go-malware-is-now-common-having-
been-adopted-by-both-apts-and-e-crime-groups/

[21] Hacker-News. (2021). Malware Written in Nim Programming Language.
[Online]. Available: https://thehackernews.com/2021/03/researchers-
spotted-malware-written-in.html

[22] Trend Micro. (2022). Agenda Ransomware Uses Rust To
Target More Vital Industries. [Online]. Available: https://www.
trendmicro.com/en_us/research/22/l/agenda-ransomware-uses-rust-
to-target-more-vital-industries.html

[23] Dragos. (2020). EKANS Ransomware and ICS Operations. [Online].
Available: https://www.dragos.com/blog/industry-news/ekans-ransom
ware-and-ics-operations/

[24] R. Tay and J. Salvio. (2022). New IceXLoader 3.0 - Developers Warm
Up To Nim. [Online]. Available: https://www.fortinet.com/blog/threat-
research/new-icexloader-3-0-developers-warm-up-to-nim

[25] Z. Tian, Y. Huang, B. Xie, Y. Chen, L. Chen, and D. Wu, ‘“Fine-grained
compiler identification with sequence-oriented neural modeling,” IEEE
Access, vol. 9, pp. 49160—49175, 2021.

[26] Y. Otsubo, A. Otsuka, M. Mimura, T. Sakaki, and H. Ukegawa, “O-
GlassesX: Compiler provenance recovery with attention mechanism from
a short code fragment,” in Proc. Workshop Binary Anal. Res., 2020.

[27] T. Benoit, J.-Y. Marion, and S. Bardin, “Binary level toolchain
provenance identification with graph neural networks,” in Proc. IEEE
Int. Conf. Softw. Anal., Evol. Reengineering (SANER), Mar. 2021,
pp. 131-141.

[28] A. Rahimian, P. Shirani, S. Alrbaee, L. Wang, and M. Debbabi,
“BinComp: A stratified approach to compiler provenance attribution,”
Digit. Invest., vol. 14, pp. S146-S155, Aug. 2015.

[29] C. Cifuentes and K. J. Gough, “Decompilation of binary programs,”
Softw., Pract. Exp., vol. 25, no. 7, pp. 811-829, Jul. 1995.

[30] W.-J.Li, K. Wang, S. J. Stolfo, and B. Herzog, ‘‘Fileprints: Identifying file
types by n-gram analysis,” in Proc. 6th Annu. IEEE Syst., Man Cybern.
(SMC) Inf. Assurance Workshop, Jun. 2005, pp. 64-71.

[31] Hex-Rays. (2022). IDA Pro Disassembler. [Online]. Available:
https://www.hex-rays.com/products/ida/

[32] National-Security-Agency. (2022). Ghidra Software Reverse Engineering
Framework. [Online]. Available: https://ghidra-sre.org/

[33] L. Chen, Z. He, H. Wu, F. Xu, Y. Qian, and B. Mao, “DIComP:
Lightweight data-driven inference of binary compiler provenance with
high accuracy,” in Proc. IEEE Int. Conf. Softw. Anal., Evol. Reeng.
(SANER), Mar. 2022, pp. 112-122.

VOLUME 12, 2024

H. Jang et al.: ToolPhet: Inference of Compiler Provenance From Stripped Binaries

IEEE Access

[34]

[35]

[36]

[37]

[38

[39

[40]
[41]
[42]
[43]

[44
[45

[46

[47]

[48]

[49]

[50]

[51]

[52]

[53]
[54]
[55]
[56]
[57]

[58

[59]
[60]

[61]

M. Ismail, Y. Lin, D. Han, and D. Gao, “BinAlign: Alignment padding
based compiler provenance recovery,” in Information Security and
Privacy. Cham, Switzerland: Springer, 2023, pp. 609-629.

Y. Du, O. Alrawi, K. Snow, M. Antonakakis, and F. Monrose, ‘“‘Improving
security tasks using compiler provenance information recovered at the
binary-level,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.
(CCS). New York, NY, USA: Association for Computing, Nov. 2023,
pp. 2695-2709.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understanding,”
in Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics, Hum.
Lang. Technol. Minneapolis, MI, USA: Association for Computational
Linguistics, vol. 1, Jun. 2019, pp.4171-4186. [Online]. Available:
https://aclanthology.org/N19-1423

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and
T.-Y. Liu, “LightGBM: A highly efficient gradient boosting decision
tree,” in Proc. 31st Int. Conf. Neural Inf. Process. Syst. (NIPS). Red Hook,
NY, USA: Curran Associates, 2017, pp. 3149-3157.

GCC. (1987). GCC, The GNU Compiler Collection. [Online]. Available:
https://gce.gnu.org/

LLVM. (2003). The LLVM Compiler Infrastructure. [Online]. Available:
https://llvm.org/

T. Wolf et al., “Huggingface’s transformers: State-of-the-art natural
language processing,” 2019, arXiv:1910.03771.

Huanghonggit. (2019). BERT MLM with PyTorch. [Online]. Available:
https://github.com/huanghonggit/Mask-Language-Model

I. U. Haq and J. Caballero, “A survey of binary code similarity,” ACM
Comput. Surv., vol. 54, no. 3, pp. 1-38, Apr. 2021.

Z. Liu, “Binary code similarity detection,” in Proc. 36th IEEE/ACM Int.
Conf. Automated Softw. Eng. (ASE), Nov. 2021, pp. 1056-1060.

GitHub. (2022). GitHub. [Online]. Available: https://github.com/
RosettaCode-Contributors. (2022). Rosetta-Code. [Online]. Available:
https://rosettacode.org/w/index.php?title=Rosetta_Code&oldid=322370
Detect-It-Easy. (2022). Program for Determining Types of Files
for Windows, Linux and MacOS. [Online]. Available: https://github.
com/horsicq/Detect-It-Easy/

J. Elman, “Finding structure in time,” Cognit. Sci., vol. 14,
no. 2, pp.179-211, Jun. 1990. [Online]. Available: https://www
.sciencedirect.com/science/article/pii/036402139090002E

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, Nov. 1997.

K. Fukushima, “Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position,”
Biol. Cybern., vol. 36, no. 4, pp. 193-202, Apr. 1980.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” 2016, arXiv:1409.0473.

A. Adhikari and P. A. Kulkarni, “Using the strings metadata to detect
the source language of the binary,” in Proc. Int. Conf. Innov. Comput.
Res. (ICR), K. Daimi and A. A. Sadoon, Eds. Cham, Switzerland:
Springer, 2022, pp. 190-200.

B. W. Kernighan and D. M. Ritchie, The C Programming (Prentice Hall
Professional Technical Reference), 2nd ed. Upper Saddle River, NJ, USA:
Prentice-Hall, 1988.

B. Stroustrup. (1985). The Programming Language C++. [Online].
Available: https://isocpp.org/

A. B. Cox and T. Love. (2016). Objective-C. [Online]. Available:
https://developer.apple.com/library/archive/navigation/

G. V. Rossum and F. L Drake Jr. (2022). Python Reference Manual.
[Online]. Available: https://www.python.org/psf-landing/

Y. Matsumoto. (2022). Ruby Programming Language. [Online]. Avail-
able: https://www.ruby-lang.org/

R. I. R. Gentleman. (2022). The R Project for Statistical Computing.
[Online]. Available: https://www.r-project.org/

L. Wall. (2022). The Perl Programming Language. [Online]. Available:
https://www.perl.org/

L. H. de Figueiredo, R. Ierusalimschy, and W. Celes. (2022). The
Programming Language Lua. [Online]. Available: https://www.lua.org/
J. Gosling. (2022). The Programming Language Java. [Online]. Avail-
able: https://www.java.com/

Microsoft Corporation. (2022). The Programming Language Java.
[Online]. Available: https://learn.microsoft.com/en-us/dotnet/csharp/

VOLUME 12, 2024

[62]

[63]
[64]

[65]

[66]

[67]

[68]
[69]

[70]

[71]

[72]

[73]
[74]
[75]

[76]

[77]

[78]

[79]

[80]
[81]

[82]

[83]
[84]

[85]

[86]

[87]

[88]

ECMA International Mozilla Foundation, Netscape Communications.
(2022). Javascript-MDN Web Docs. [Online]. Available: https:/
developer.mozilla.org/

J. Gosling. (2022). Java Virtual Machine. Sun Microsystems. [Online].
Available: https://www.oracle.com/it-infrastructure/

The Chromium Projects. (2022). Javascript Engine V8. [Online].
Available: https://v8.dev/

X. Li, Y. Qu, and H. Yin, “PalmTree: Learning an assembly language
model for instruction embedding,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur. (CCS). New York, NY, USA: Association for
Computing, Nov. 2021, pp. 3236-3251.

X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, ““Neural network-
based graph embedding for cross-platform binary code similarity
detection,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur. New
York, NY, USA: Association for Computing, Oct. 2017, pp. 363-376.

S. H. H. Ding, B. C. M. Fung, and P. Charland, “Asm2Vec: Boosting
static representation robustness for binary clone search against code
obfuscation and compiler optimization,” in Proc. IEEE Symp. Secur.
Privacy (SP), May 2019, pp. 472-489.

P. Cerda, G. Varoquaux, and B. Kégl, “Similarity encoding for learning
with dirty categorical variables,” 2018, arXiv:1806.00979.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” 2013, arXiv:1301.3781.

H. Koo, S. Park, D. Choi, and T. Kim, “Binary code representation
with well-balanced instruction normalization,” [EEE Access, vol. 11,
pp. 29183-29198, 2023.

J. Kornblum, “Identifying almost identical files using context triggered
piecewise hashing,” Digit. Invest., vol. 3, pp. 91-97, Sep. 2006.

D. Pizzolotto and K. Inoue, “Identifying compiler and optimization
options from binary code using deep learning approaches,” in Proc. IEEE
Int. Conf. Softw. Maintenance Evol. (ICSME), Sep. 2020, pp. 232-242.
Snaker, Qwerton, Jibz, and XineohP. (2022). PE iDentifier. [Online].
Available: https://www.aldeid.com/wiki/PEiD

Microsoft. (2022). PE Format. [Online]. Available:
.microsoft.com/en-us/windows/win32/debug/pe-format
Unix. (2022). ELF(Executable and Linkable Format) Format. [Online].
Available: https://unix.org/

Apple Inc., Carnegie Mellon University. (2022). Mach Object
File Format. [Online]. Available: https://developer.apple
.com/library/archive/documentation/Performance/Conceptual/CodeFootp
rint/Articles/MachOOverview.html

Intel. (2002). Intel oneAPI DPC++/C++ Compiler. [Online]. Available:
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-
compiler.html

Microsoft. (1997). Visual
visualstudio.microsoft.com/
L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal war
in memory,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2013,
pp. 48-62.

NPM. (2022). Node Package Manager for JavaScript’s Runtime Node.js.
[Online]. Available: https://www.npmjs.com/

Crates. (2022). The Rust Community’s Crate Registry. [Online]. Avail-
able: https://crates.io/

R. Pike, D. L. Presotto, S. Dorward, B. Flandrena, K. Thompson,
H. W. Trickey, and P. Winterbottom, “Plan 9 from bell labs,” Comput.
Syst., vol. 8, pp. 221-254, Jan. 1995.
LLVM. (2022). LLVM-Based Go
https://go.googlesource.com/gollvm/
Nimlang. (2022). Official Github Repository for Nimlang. [Online].
Available: https://github.com/nim-lang/Nim

Oracle. (2022). Java Native Interface Specification. [Online]. Available:
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.
html

https://learn

Studio. [Online]. Available: https:/

Compiler. [Online]. Available:

Microsoft. (2022). Platform Invoke (P/Invoke). [Online].
Available: https://learn.microsoft.com/en-us/dotnet/standard/native-
interop/pinvoke

A. Rumpf and Z. Karadjov. (2022). Nim Manual. [Online]. Available:
https://nim-lang.org/docs/manual.html#pragmas-compilation-option-
pragmas

J. Sieka. (2022). LLVM-Based Compiler for the Nim Language. [Online].
Available: https://github.com/arnetheduck/nlvm

12681

IEEE Access

H. Jang et al.: ToolPhet: Inference of Compiler Provenance From Stripped Binaries

[89]

[90]

[91]

[92]

[93]
[94]

[95]

[96]

[97]

[98]

[99]

12682

Rust-Contributors. (2018). Rust Symbol Name Mangling-V0. [Online].
Available: https://rust-lang.github.io/rfcs/2603-rust-symbol-name-
mangling-v0.html

Trend Micro. (2022). Closing the Door: DeadBolt Ransomware Locks
Out Vendors With Multitiered Extortion Scheme. [Online]. Avail-
able: https://www.trendmicro.com/en_us/research/22/f/closing-the-door-
deadbolt-ransomware-locks-out-vendors-with-mult.html

S. C. A. Paszke, S. Gross, and G. Chanan. (2019). Open Source Machine
Learning Framework. [Online]. Available: https://pytorch.org/

Luca Massarelli, Giuseppe Antonio Di Luna, Fabio Petroni, Leonardo
Querzoni, and Roberto Baldoni, “Safe: Self-attentive function embed-
dings for binary similarity,” in Proc. 16th Conf. Detection Intrusions
Malware Vulnerability Assessment, 2019.

GNUisance. (2022). GNU Operating System. [Online]. Available:
https://www.gnu.org/

K. O’Shea and R. Nash, “An introduction to convolutional neural
networks,” 2015, arXiv:1511.08458.

S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a
convolutional neural network,” in Proc. Int. Conf. Eng. Technol. (ICET),
Aug. 2017, pp. 1-6.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” 2014,
arXiv:1412.3555.

A. Galassi, M. Lippi, and P. Torroni, “Attention in natural language
processing,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 10,
pp. 4291-4308, Oct. 2021.

L. Dong and M. Lapata, “Language to logical form with neural
attention,” 2016, arXiv:1601.01280.

OpenSSL. (2022). Cryptography and SSL/TLS Toolkit. [Online]. Avail-
able: https://www.openssl.org

HOHYEON JANG received the B.S. degree from
Baekseok University, in 2020. He is currently
pursuing the master’s degree with the Department
of Computer Science and Engineering, College
of Computing, Sungkyunkwan University. He is
a member of the Security with AI (SecAlI) Labo-
ratory. His research interests include reverse engi-
neering, malware, and binary analysis using Al

NOZIMA MURODOVA received the bachelor’s
degree from the Department of Computer Science,
Inha University, Tashkent. She is currently pursu-
ing the degree with the Department of Computer
Science and Engineering, College of Comput-
ing, Sungkyunkwan University. She is with the
Security with Al (SecAl) Laboratory under the
supervision of Prof. Hyungjoon Koo. Her main
research interest includes software security with
artificial intelligence.

HYUNGJOON KOO received the Ph.D. degree
in computer science from Stony Brook Uni-
versity, in 2019. He is currently an Assistant
Professor with the Department of Computer Sci-
ence and Engineering, College of Computing,
Sungkyunkwan University (SKKU). Before join-
ing SKKU, he was a Postdoctoral Researcher with
the Security with Al (SecAl) Laboratory, Georgia
Institute of Technology. He is also leading the
SecAl Laboratory. His research interests include

software security, network security, binary analysis and protection, and
security leveraging artificial intelligence.

VOLUME 12, 2024

